1
0
mirror of https://github.com/TomHarte/CLK.git synced 2024-11-29 12:50:28 +00:00

Improve const correctness, simplify inheritance.

This commit is contained in:
Thomas Harte 2023-01-01 13:49:11 -05:00
parent 71598250ea
commit 11542e7a7f
3 changed files with 414 additions and 415 deletions

View File

@ -671,7 +671,7 @@ void TMS9918<personality>::write(int address, uint8_t value) {
}
template <Personality personality>
uint8_t TMS9918<personality>::get_current_line() {
uint8_t TMS9918<personality>::get_current_line() const {
// Determine the row to return.
constexpr int row_change_position = 63; // This is the proper Master System value; substitute if any other VDPs turn out to have this functionality.
int source_row =
@ -706,7 +706,7 @@ uint8_t TMS9918<personality>::get_current_line() {
}
template <Personality personality>
uint8_t TMS9918<personality>::get_latched_horizontal_counter() {
uint8_t TMS9918<personality>::get_latched_horizontal_counter() const {
// Translate from internal numbering, which puts pixel output
// in the final 256 pixels of 342, to the public numbering,
// which makes the 256 pixels the first 256 spots, but starts
@ -741,12 +741,12 @@ uint8_t TMS9918<personality>::read(int address) {
}
template <Personality personality>
HalfCycles Base<personality>::half_cycles_before_internal_cycles(int internal_cycles) {
HalfCycles Base<personality>::half_cycles_before_internal_cycles(int internal_cycles) const {
return HalfCycles(((internal_cycles << 2) + (2 - cycles_error_)) / 3);
}
template <Personality personality>
HalfCycles TMS9918<personality>::get_next_sequence_point() {
HalfCycles TMS9918<personality>::get_next_sequence_point() const {
if(!this->generate_interrupts_ && !this->enable_line_interrupts_) return HalfCycles::max();
if(get_interrupt_line()) return HalfCycles::max();
@ -819,7 +819,7 @@ HalfCycles TMS9918<personality>::get_time_until_line(int line) {
}
template <Personality personality>
bool TMS9918<personality>::get_interrupt_line() {
bool TMS9918<personality>::get_interrupt_line() const {
return
((this->status_ & StatusInterrupt) && this->generate_interrupts_) ||
(this->enable_line_interrupts_ && this->line_interrupt_pending_);

View File

@ -55,7 +55,7 @@ namespace TMS {
These chips have only one non-on-demand interaction with the outside world: an interrupt line.
See get_time_until_interrupt and get_interrupt_line for asynchronous operation options.
*/
template <Personality personality> class TMS9918: public Base<personality> {
template <Personality personality> class TMS9918: private Base<personality> {
public:
/*! Constructs an instance of the VDP that behaves according to the templated personality. */
TMS9918();
@ -93,10 +93,10 @@ template <Personality personality> class TMS9918: public Base<personality> {
uint8_t read(int address);
/*! Gets the current scan line; provided by the Sega VDPs only. */
uint8_t get_current_line();
uint8_t get_current_line() const;
/*! Gets the current latched horizontal counter; provided by the Sega VDPs only. */
uint8_t get_latched_horizontal_counter();
uint8_t get_latched_horizontal_counter() const;
/*! Latches the current horizontal counter. */
void latch_horizontal_counter();
@ -108,7 +108,7 @@ template <Personality personality> class TMS9918: public Base<personality> {
If get_interrupt_line is true now of if get_interrupt_line would
never return true, returns HalfCycles::max().
*/
HalfCycles get_next_sequence_point();
HalfCycles get_next_sequence_point() const;
/*!
Returns the amount of time until the nominated line interrupt position is
@ -123,7 +123,7 @@ template <Personality personality> class TMS9918: public Base<personality> {
/*!
@returns @c true if the interrupt line is currently active; @c false otherwise.
*/
bool get_interrupt_line();
bool get_interrupt_line() const;
};
}

View File

@ -121,281 +121,280 @@ struct LineBufferPointer {
int row, column;
};
template <Personality personality> class Base {
public:
static uint32_t palette_pack(uint8_t r, uint8_t g, uint8_t b) {
uint32_t result = 0;
uint8_t *const result_ptr = reinterpret_cast<uint8_t *>(&result);
result_ptr[0] = r;
result_ptr[1] = g;
result_ptr[2] = b;
result_ptr[3] = 0;
return result;
}
template <Personality personality> struct Base {
static constexpr int output_lag = 11; // i.e. pixel output will occur 11 cycles
// after corresponding data read.
protected:
static constexpr int output_lag = 11; // i.e. pixel output will occur 11 cycles after corresponding data read.
static constexpr uint32_t palette_pack(uint8_t r, uint8_t g, uint8_t b) {
uint32_t result = 0;
uint8_t *const result_ptr = reinterpret_cast<uint8_t *>(&result);
result_ptr[0] = r;
result_ptr[1] = g;
result_ptr[2] = b;
result_ptr[3] = 0;
return result;
}
// The default TMS palette.
const uint32_t palette[16] = {
palette_pack(0, 0, 0),
palette_pack(0, 0, 0),
palette_pack(33, 200, 66),
palette_pack(94, 220, 120),
// The default TMS palette.
const uint32_t palette[16] = {
palette_pack(0, 0, 0),
palette_pack(0, 0, 0),
palette_pack(33, 200, 66),
palette_pack(94, 220, 120),
palette_pack(84, 85, 237),
palette_pack(125, 118, 252),
palette_pack(212, 82, 77),
palette_pack(66, 235, 245),
palette_pack(84, 85, 237),
palette_pack(125, 118, 252),
palette_pack(212, 82, 77),
palette_pack(66, 235, 245),
palette_pack(252, 85, 84),
palette_pack(255, 121, 120),
palette_pack(212, 193, 84),
palette_pack(230, 206, 128),
palette_pack(252, 85, 84),
palette_pack(255, 121, 120),
palette_pack(212, 193, 84),
palette_pack(230, 206, 128),
palette_pack(33, 176, 59),
palette_pack(201, 91, 186),
palette_pack(204, 204, 204),
palette_pack(255, 255, 255)
};
palette_pack(33, 176, 59),
palette_pack(201, 91, 186),
palette_pack(204, 204, 204),
palette_pack(255, 255, 255)
};
Base();
Base();
Outputs::CRT::CRT crt_;
TVStandard tv_standard_ = TVStandard::NTSC;
Outputs::CRT::CRT crt_;
TVStandard tv_standard_ = TVStandard::NTSC;
// Holds the contents of this VDP's connected DRAM.
std::array<uint8_t, memory_size(personality)> ram_;
// Holds the contents of this VDP's connected DRAM.
std::array<uint8_t, memory_size(personality)> ram_;
// Holds the state of the DRAM/CRAM-access mechanism.
uint16_t ram_pointer_ = 0;
uint8_t read_ahead_buffer_ = 0;
MemoryAccess queued_access_ = MemoryAccess::None;
int cycles_until_access_ = 0;
int minimum_access_column_ = 0;
int vram_access_delay() {
// This seems to be correct for all currently-modelled VDPs;
// it's the delay between an external device scheduling a
// read or write and the very first time that can occur
// (though, in practice, it won't happen until the next
// external slot after this number of cycles after the
// device has requested the read or write).
return 6;
}
// Holds the state of the DRAM/CRAM-access mechanism.
uint16_t ram_pointer_ = 0;
uint8_t read_ahead_buffer_ = 0;
MemoryAccess queued_access_ = MemoryAccess::None;
int cycles_until_access_ = 0;
int minimum_access_column_ = 0;
int vram_access_delay() {
// This seems to be correct for all currently-modelled VDPs;
// it's the delay between an external device scheduling a
// read or write and the very first time that can occur
// (though, in practice, it won't happen until the next
// external slot after this number of cycles after the
// device has requested the read or write).
return 6;
}
// Holds the main status register.
uint8_t status_ = 0;
// Holds the main status register.
uint8_t status_ = 0;
// Current state of programmer input.
bool write_phase_ = false; // Determines whether the VDP is expecting the low or high byte of a write.
uint8_t low_write_ = 0; // Buffers the low byte of a write.
// Current state of programmer input.
bool write_phase_ = false; // Determines whether the VDP is expecting the low or high byte of a write.
uint8_t low_write_ = 0; // Buffers the low byte of a write.
// Various programmable flags.
bool mode1_enable_ = false;
bool mode2_enable_ = false;
bool mode3_enable_ = false;
bool blank_display_ = false;
bool sprites_16x16_ = false;
bool sprites_magnified_ = false;
bool generate_interrupts_ = false;
int sprite_height_ = 8;
// Various programmable flags.
bool mode1_enable_ = false;
bool mode2_enable_ = false;
bool mode3_enable_ = false;
bool blank_display_ = false;
bool sprites_16x16_ = false;
bool sprites_magnified_ = false;
bool generate_interrupts_ = false;
int sprite_height_ = 8;
size_t pattern_name_address_ = 0; // i.e. address of the tile map.
size_t colour_table_address_ = 0; // address of the colour map (if applicable).
size_t pattern_generator_table_address_ = 0; // address of the tile contents.
size_t sprite_attribute_table_address_ = 0; // address of the sprite list.
size_t sprite_generator_table_address_ = 0; // address of the sprite contents.
size_t pattern_name_address_ = 0; // i.e. address of the tile map.
size_t colour_table_address_ = 0; // address of the colour map (if applicable).
size_t pattern_generator_table_address_ = 0; // address of the tile contents.
size_t sprite_attribute_table_address_ = 0; // address of the sprite list.
size_t sprite_generator_table_address_ = 0; // address of the sprite contents.
uint8_t text_colour_ = 0;
uint8_t background_colour_ = 0;
uint8_t text_colour_ = 0;
uint8_t background_colour_ = 0;
// This implementation of this chip officially accepts a 3.58Mhz clock, but runs
// internally at 5.37Mhz. The following two help to maintain a lossless conversion
// from the one to the other.
int cycles_error_ = 0;
HalfCycles half_cycles_before_internal_cycles(int internal_cycles);
// This implementation of this chip officially accepts a 3.58Mhz clock, but runs
// internally at 5.37Mhz. The following two help to maintain a lossless conversion
// from the one to the other.
int cycles_error_ = 0;
HalfCycles half_cycles_before_internal_cycles(int internal_cycles) const;
// Internal mechanisms for position tracking.
int latched_column_ = 0;
// Internal mechanisms for position tracking.
int latched_column_ = 0;
// A helper function to output the current border colour for
// the number of cycles supplied.
void output_border(int cycles, uint32_t cram_dot);
// A helper function to output the current border colour for
// the number of cycles supplied.
void output_border(int cycles, uint32_t cram_dot);
// A struct to contain timing information for the current mode.
// A struct to contain timing information for the current mode.
struct {
/*
Vertical layout:
Lines 0 to [pixel_lines]: standard data fetch and drawing will occur.
... to [first_vsync_line]: refresh fetches will occur and border will be output.
.. to [2.5 or 3 lines later]: vertical sync is output.
... to [total lines - 1]: refresh fetches will occur and border will be output.
... for one line: standard data fetch will occur, without drawing.
*/
int total_lines = 262;
int pixel_lines = 192;
int first_vsync_line = 227;
// Maximum number of sprite slots to populate;
// if sprites beyond this number should be visible
// then the appropriate status information will be set.
int maximum_visible_sprites = 4;
// Set the position, in cycles, of the two interrupts,
// within a line.
struct {
/*
Vertical layout:
int column = 4;
int row = 193;
} end_of_frame_interrupt_position;
int line_interrupt_position = -1;
Lines 0 to [pixel_lines]: standard data fetch and drawing will occur.
... to [first_vsync_line]: refresh fetches will occur and border will be output.
.. to [2.5 or 3 lines later]: vertical sync is output.
... to [total lines - 1]: refresh fetches will occur and border will be output.
... for one line: standard data fetch will occur, without drawing.
*/
int total_lines = 262;
int pixel_lines = 192;
int first_vsync_line = 227;
// Enables or disabled the recognition of the sprite
// list terminator, and sets the terminator value.
bool allow_sprite_terminator = true;
uint8_t sprite_terminator = 0xd0;
} mode_timing_;
// Maximum number of sprite slots to populate;
// if sprites beyond this number should be visible
// then the appropriate status information will be set.
int maximum_visible_sprites = 4;
uint8_t line_interrupt_target = 0xff;
uint8_t line_interrupt_counter = 0;
bool enable_line_interrupts_ = false;
bool line_interrupt_pending_ = false;
// Set the position, in cycles, of the two interrupts,
// within a line.
struct {
int column = 4;
int row = 193;
} end_of_frame_interrupt_position;
int line_interrupt_position = -1;
ScreenMode screen_mode_;
LineBuffer line_buffers_[313];
void posit_sprite(LineBuffer &buffer, int sprite_number, int sprite_y, int screen_row);
// Enables or disabled the recognition of the sprite
// list terminator, and sets the terminator value.
bool allow_sprite_terminator = true;
uint8_t sprite_terminator = 0xd0;
} mode_timing_;
// There is a delay between reading into the line buffer and outputting from there to the screen. That delay
// is observeable because reading time affects availability of memory accesses and therefore time in which
// to update sprites and tiles, but writing time affects when the palette is used and when the collision flag
// may end up being set. So the two processes are slightly decoupled. The end of reading one line may overlap
// with the beginning of writing the next, hence the two separate line buffers.
LineBufferPointer read_pointer_, write_pointer_;
uint8_t line_interrupt_target = 0xff;
uint8_t line_interrupt_counter = 0;
bool enable_line_interrupts_ = false;
bool line_interrupt_pending_ = false;
// The SMS VDP has a programmer-set colour palette, with a dedicated patch of RAM. But the RAM is only exactly
// fast enough for the pixel clock. So when the programmer writes to it, that causes a one-pixel glitch; there
// isn't the bandwidth for the read both write to occur simultaneously. The following buffer therefore keeps
// track of pending collisions, for visual reproduction.
struct CRAMDot {
LineBufferPointer location;
uint32_t value;
};
std::vector<CRAMDot> upcoming_cram_dots_;
ScreenMode screen_mode_;
LineBuffer line_buffers_[313];
void posit_sprite(LineBuffer &buffer, int sprite_number, int sprite_y, int screen_row);
// Extra information that affects the Master System output mode.
struct {
// Programmer-set flags.
bool vertical_scroll_lock = false;
bool horizontal_scroll_lock = false;
bool hide_left_column = false;
bool shift_sprites_8px_left = false;
bool mode4_enable = false;
uint8_t horizontal_scroll = 0;
uint8_t vertical_scroll = 0;
// There is a delay between reading into the line buffer and outputting from there to the screen. That delay
// is observeable because reading time affects availability of memory accesses and therefore time in which
// to update sprites and tiles, but writing time affects when the palette is used and when the collision flag
// may end up being set. So the two processes are slightly decoupled. The end of reading one line may overlap
// with the beginning of writing the next, hence the two separate line buffers.
LineBufferPointer read_pointer_, write_pointer_;
// The Master System's additional colour RAM.
uint32_t colour_ram[32];
bool cram_is_selected = false;
// The SMS VDP has a programmer-set colour palette, with a dedicated patch of RAM. But the RAM is only exactly
// fast enough for the pixel clock. So when the programmer writes to it, that causes a one-pixel glitch; there
// isn't the bandwidth for the read both write to occur simultaneously. The following buffer therefore keeps
// track of pending collisions, for visual reproduction.
struct CRAMDot {
LineBufferPointer location;
uint32_t value;
};
std::vector<CRAMDot> upcoming_cram_dots_;
// Holds the vertical scroll position for this frame; this is latched
// once and cannot dynamically be changed until the next frame.
uint8_t latched_vertical_scroll = 0;
// Extra information that affects the Master System output mode.
struct {
// Programmer-set flags.
bool vertical_scroll_lock = false;
bool horizontal_scroll_lock = false;
bool hide_left_column = false;
bool shift_sprites_8px_left = false;
bool mode4_enable = false;
uint8_t horizontal_scroll = 0;
uint8_t vertical_scroll = 0;
size_t pattern_name_address;
size_t sprite_attribute_table_address;
size_t sprite_generator_table_address;
} master_system_;
// The Master System's additional colour RAM.
uint32_t colour_ram[32];
bool cram_is_selected = false;
// Holds the vertical scroll position for this frame; this is latched
// once and cannot dynamically be changed until the next frame.
uint8_t latched_vertical_scroll = 0;
size_t pattern_name_address;
size_t sprite_attribute_table_address;
size_t sprite_generator_table_address;
} master_system_;
void set_current_screen_mode() {
if(blank_display_) {
screen_mode_ = ScreenMode::Blank;
return;
}
if constexpr (is_sega_vdp(personality)) {
if(master_system_.mode4_enable) {
screen_mode_ = ScreenMode::SMSMode4;
mode_timing_.maximum_visible_sprites = 8;
return;
}
}
mode_timing_.maximum_visible_sprites = 4;
if(!mode1_enable_ && !mode2_enable_ && !mode3_enable_) {
screen_mode_ = ScreenMode::ColouredText;
return;
}
if(mode1_enable_ && !mode2_enable_ && !mode3_enable_) {
screen_mode_ = ScreenMode::Text;
return;
}
if(!mode1_enable_ && mode2_enable_ && !mode3_enable_) {
screen_mode_ = ScreenMode::Graphics;
return;
}
if(!mode1_enable_ && !mode2_enable_ && mode3_enable_) {
screen_mode_ = ScreenMode::MultiColour;
return;
}
// TODO: undocumented TMS modes.
void set_current_screen_mode() {
if(blank_display_) {
screen_mode_ = ScreenMode::Blank;
return;
}
void do_external_slot(int access_column) {
// Don't do anything if the required time for the access to become executable
// has yet to pass.
if(access_column < minimum_access_column_) {
if constexpr (is_sega_vdp(personality)) {
if(master_system_.mode4_enable) {
screen_mode_ = ScreenMode::SMSMode4;
mode_timing_.maximum_visible_sprites = 8;
return;
}
switch(queued_access_) {
default: return;
case MemoryAccess::Write:
if(master_system_.cram_is_selected) {
// Adjust the palette. In a Master System blue has a slightly different
// scale; cf. https://www.retrorgb.com/sega-master-system-non-linear-blue-channel-findings.html
constexpr uint8_t rg_scale[] = {0, 85, 170, 255};
constexpr uint8_t b_scale[] = {0, 104, 170, 255};
master_system_.colour_ram[ram_pointer_ & 0x1f] = palette_pack(
rg_scale[(read_ahead_buffer_ >> 0) & 3],
rg_scale[(read_ahead_buffer_ >> 2) & 3],
b_scale[(read_ahead_buffer_ >> 4) & 3]
);
// Schedule a CRAM dot; this is scheduled for wherever it should appear
// on screen. So it's wherever the output stream would be now. Which
// is output_lag cycles ago from the point of view of the input stream.
CRAMDot &dot = upcoming_cram_dots_.emplace_back();
dot.location.column = write_pointer_.column - output_lag;
dot.location.row = write_pointer_.row;
// Handle before this row conditionally; then handle after (or, more realistically,
// exactly at the end of) naturally.
if(dot.location.column < 0) {
--dot.location.row;
dot.location.column += 342;
}
dot.location.row += dot.location.column / 342;
dot.location.column %= 342;
dot.value = master_system_.colour_ram[ram_pointer_ & 0x1f];
} else {
ram_[ram_pointer_ & 16383] = read_ahead_buffer_;
}
break;
case MemoryAccess::Read:
read_ahead_buffer_ = ram_[ram_pointer_ & 16383];
break;
}
++ram_pointer_;
queued_access_ = MemoryAccess::None;
}
mode_timing_.maximum_visible_sprites = 4;
if(!mode1_enable_ && !mode2_enable_ && !mode3_enable_) {
screen_mode_ = ScreenMode::ColouredText;
return;
}
if(mode1_enable_ && !mode2_enable_ && !mode3_enable_) {
screen_mode_ = ScreenMode::Text;
return;
}
if(!mode1_enable_ && mode2_enable_ && !mode3_enable_) {
screen_mode_ = ScreenMode::Graphics;
return;
}
if(!mode1_enable_ && !mode2_enable_ && mode3_enable_) {
screen_mode_ = ScreenMode::MultiColour;
return;
}
// TODO: undocumented TMS modes.
screen_mode_ = ScreenMode::Blank;
}
void do_external_slot(int access_column) {
// Don't do anything if the required time for the access to become executable
// has yet to pass.
if(access_column < minimum_access_column_) {
return;
}
switch(queued_access_) {
default: return;
case MemoryAccess::Write:
if(master_system_.cram_is_selected) {
// Adjust the palette. In a Master System blue has a slightly different
// scale; cf. https://www.retrorgb.com/sega-master-system-non-linear-blue-channel-findings.html
constexpr uint8_t rg_scale[] = {0, 85, 170, 255};
constexpr uint8_t b_scale[] = {0, 104, 170, 255};
master_system_.colour_ram[ram_pointer_ & 0x1f] = palette_pack(
rg_scale[(read_ahead_buffer_ >> 0) & 3],
rg_scale[(read_ahead_buffer_ >> 2) & 3],
b_scale[(read_ahead_buffer_ >> 4) & 3]
);
// Schedule a CRAM dot; this is scheduled for wherever it should appear
// on screen. So it's wherever the output stream would be now. Which
// is output_lag cycles ago from the point of view of the input stream.
CRAMDot &dot = upcoming_cram_dots_.emplace_back();
dot.location.column = write_pointer_.column - output_lag;
dot.location.row = write_pointer_.row;
// Handle before this row conditionally; then handle after (or, more realistically,
// exactly at the end of) naturally.
if(dot.location.column < 0) {
--dot.location.row;
dot.location.column += 342;
}
dot.location.row += dot.location.column / 342;
dot.location.column %= 342;
dot.value = master_system_.colour_ram[ram_pointer_ & 0x1f];
} else {
ram_[ram_pointer_ & 16383] = read_ahead_buffer_;
}
break;
case MemoryAccess::Read:
read_ahead_buffer_ = ram_[ram_pointer_ & 16383];
break;
}
++ram_pointer_;
queued_access_ = MemoryAccess::None;
}
/*
Fetching routines follow below; they obey the following rules:
@ -429,9 +428,9 @@ template <Personality personality> class Base {
*/
#define slot(n) \
if(use_end && end == n) return; \
[[fallthrough]]; \
case n
if(use_end && end == n) return; \
[[fallthrough]]; \
case n
#define external_slot(n) \
slot(n): do_external_slot((n)*2);
@ -461,7 +460,7 @@ template <Personality personality> class Base {
TMS9918 Fetching Code
************************************************/
template<bool use_end> void fetch_tms_refresh(int start, int end) {
template<bool use_end> void fetch_tms_refresh(int start, int end) {
#define refresh(location) \
slot(location): \
external_slot(location+1);
@ -478,34 +477,34 @@ template <Personality personality> class Base {
refreshes_4(location); \
refreshes_4(location+8);
switch(start) {
default: assert(false);
switch(start) {
default: assert(false);
/* 44 external slots */
external_slots_32(0)
external_slots_8(32)
external_slots_4(40)
/* 44 external slots */
external_slots_32(0)
external_slots_8(32)
external_slots_4(40)
/* 64 refresh/external slot pairs (= 128 windows) */
refreshes_8(44);
refreshes_8(60);
refreshes_8(76);
refreshes_8(92);
refreshes_8(108);
refreshes_8(124);
refreshes_8(140);
refreshes_8(156);
/* 64 refresh/external slot pairs (= 128 windows) */
refreshes_8(44);
refreshes_8(60);
refreshes_8(76);
refreshes_8(92);
refreshes_8(108);
refreshes_8(124);
refreshes_8(140);
refreshes_8(156);
return;
}
return;
}
#undef refreshes_8
#undef refreshes_4
#undef refreshes_2
#undef refresh
}
}
template<bool use_end> void fetch_tms_text(int start, int end) {
template<bool use_end> void fetch_tms_text(int start, int end) {
#define fetch_tile_name(location, column) slot(location): line_buffer.names[column].offset = ram_[row_base + column];
#define fetch_tile_pattern(location, column) slot(location): line_buffer.patterns[column][0] = ram_[row_offset + size_t(line_buffer.names[column].offset << 3)];
@ -526,33 +525,33 @@ template <Personality personality> class Base {
fetch_columns_4(location, column); \
fetch_columns_4(location+12, column+4);
LineBuffer &line_buffer = line_buffers_[write_pointer_.row];
const size_t row_base = pattern_name_address_ & (0x3c00 | size_t(write_pointer_.row >> 3) * 40);
const size_t row_offset = pattern_generator_table_address_ & (0x3800 | (write_pointer_.row & 7));
LineBuffer &line_buffer = line_buffers_[write_pointer_.row];
const size_t row_base = pattern_name_address_ & (0x3c00 | size_t(write_pointer_.row >> 3) * 40);
const size_t row_offset = pattern_generator_table_address_ & (0x3800 | (write_pointer_.row & 7));
switch(start) {
default: assert(false);
switch(start) {
default: assert(false);
/* 47 external slots (= 47 windows) */
external_slots_32(0)
external_slots_8(32)
external_slots_4(40)
external_slots_2(44)
external_slot(46)
/* 47 external slots (= 47 windows) */
external_slots_32(0)
external_slots_8(32)
external_slots_4(40)
external_slots_2(44)
external_slot(46)
/* 40 column fetches (= 120 windows) */
fetch_columns_8(47, 0);
fetch_columns_8(71, 8);
fetch_columns_8(95, 16);
fetch_columns_8(119, 24);
fetch_columns_8(143, 32);
/* 40 column fetches (= 120 windows) */
fetch_columns_8(47, 0);
fetch_columns_8(71, 8);
fetch_columns_8(95, 16);
fetch_columns_8(119, 24);
fetch_columns_8(143, 32);
/* 5 more external slots */
external_slots_4(167);
external_slot(171);
/* 5 more external slots */
external_slots_4(167);
external_slot(171);
return;
}
return;
}
#undef fetch_columns_8
#undef fetch_columns_4
@ -560,9 +559,9 @@ template <Personality personality> class Base {
#undef fetch_column
#undef fetch_tile_pattern
#undef fetch_tile_name
}
}
template<bool use_end> void fetch_tms_character(int start, int end) {
template<bool use_end> void fetch_tms_character(int start, int end) {
#define sprite_fetch_coordinates(location, sprite) \
slot(location): \
slot(location+1): \
@ -623,73 +622,73 @@ template <Personality personality> class Base {
slot(location+14): \
slot(location+15): fetch_tile(column+3)
LineBuffer &line_buffer = line_buffers_[write_pointer_.row];
LineBuffer &sprite_selection_buffer = line_buffers_[(write_pointer_.row + 1) % mode_timing_.total_lines];
const size_t row_base = pattern_name_address_ & (size_t((write_pointer_.row << 2)&~31) | 0x3c00);
LineBuffer &line_buffer = line_buffers_[write_pointer_.row];
LineBuffer &sprite_selection_buffer = line_buffers_[(write_pointer_.row + 1) % mode_timing_.total_lines];
const size_t row_base = pattern_name_address_ & (size_t((write_pointer_.row << 2)&~31) | 0x3c00);
size_t pattern_base = pattern_generator_table_address_;
size_t colour_base = colour_table_address_;
int colour_name_shift = 6;
size_t pattern_base = pattern_generator_table_address_;
size_t colour_base = colour_table_address_;
int colour_name_shift = 6;
if(screen_mode_ == ScreenMode::Graphics) {
// If this is high resolution mode, allow the row number to affect the pattern and colour addresses.
pattern_base &= size_t(0x2000 | ((write_pointer_.row & 0xc0) << 5));
colour_base &= size_t(0x2000 | ((write_pointer_.row & 0xc0) << 5));
if(screen_mode_ == ScreenMode::Graphics) {
// If this is high resolution mode, allow the row number to affect the pattern and colour addresses.
pattern_base &= size_t(0x2000 | ((write_pointer_.row & 0xc0) << 5));
colour_base &= size_t(0x2000 | ((write_pointer_.row & 0xc0) << 5));
colour_base += size_t(write_pointer_.row & 7);
colour_name_shift = 0;
} else {
colour_base &= size_t(0xffc0);
pattern_base &= size_t(0x3800);
}
colour_base += size_t(write_pointer_.row & 7);
colour_name_shift = 0;
} else {
colour_base &= size_t(0xffc0);
pattern_base &= size_t(0x3800);
}
if(screen_mode_ == ScreenMode::MultiColour) {
pattern_base += size_t((write_pointer_.row >> 2) & 7);
} else {
pattern_base += size_t(write_pointer_.row & 7);
}
if(screen_mode_ == ScreenMode::MultiColour) {
pattern_base += size_t((write_pointer_.row >> 2) & 7);
} else {
pattern_base += size_t(write_pointer_.row & 7);
}
switch(start) {
default: assert(false);
switch(start) {
default: assert(false);
external_slots_2(0);
external_slots_2(0);
sprite_fetch_block(2, 0);
sprite_fetch_block(8, 1);
sprite_fetch_coordinates(14, 2);
sprite_fetch_block(2, 0);
sprite_fetch_block(8, 1);
sprite_fetch_coordinates(14, 2);
external_slots_4(16);
external_slot(20);
external_slots_4(16);
external_slot(20);
sprite_fetch_graphics(21, 2);
sprite_fetch_block(25, 3);
sprite_fetch_graphics(21, 2);
sprite_fetch_block(25, 3);
slot(31):
sprite_selection_buffer.reset_sprite_collection();
do_external_slot(31*2);
external_slots_2(32);
external_slot(34);
slot(31):
sprite_selection_buffer.reset_sprite_collection();
do_external_slot(31*2);
external_slots_2(32);
external_slot(34);
sprite_y_read(35, 0);
sprite_y_read(36, 1);
sprite_y_read(37, 2);
sprite_y_read(38, 3);
sprite_y_read(39, 4);
sprite_y_read(40, 5);
sprite_y_read(41, 6);
sprite_y_read(42, 7);
sprite_y_read(35, 0);
sprite_y_read(36, 1);
sprite_y_read(37, 2);
sprite_y_read(38, 3);
sprite_y_read(39, 4);
sprite_y_read(40, 5);
sprite_y_read(41, 6);
sprite_y_read(42, 7);
background_fetch_block(43, 0, 8);
background_fetch_block(59, 4, 11);
background_fetch_block(75, 8, 14);
background_fetch_block(91, 12, 17);
background_fetch_block(107, 16, 20);
background_fetch_block(123, 20, 23);
background_fetch_block(139, 24, 26);
background_fetch_block(155, 28, 29);
background_fetch_block(43, 0, 8);
background_fetch_block(59, 4, 11);
background_fetch_block(75, 8, 14);
background_fetch_block(91, 12, 17);
background_fetch_block(107, 16, 20);
background_fetch_block(123, 20, 23);
background_fetch_block(139, 24, 26);
background_fetch_block(155, 28, 29);
return;
}
return;
}
#undef background_fetch_block
#undef fetch_tile
@ -698,14 +697,14 @@ template <Personality personality> class Base {
#undef sprite_fetch_block
#undef sprite_fetch_graphics
#undef sprite_fetch_coordinates
}
}
/***********************************************
Master System Fetching Code
************************************************/
template<bool use_end> void fetch_sms(int start, int end) {
template<bool use_end> void fetch_sms(int start, int end) {
#define sprite_fetch(sprite) {\
line_buffer.active_sprites[sprite].x = \
ram_[\
@ -775,74 +774,74 @@ template <Personality personality> class Base {
slot(location+14): \
slot(location+15): fetch_tile(column+3)
// Determine the coarse horizontal scrolling offset; this isn't applied on the first two lines if the programmer has requested it.
LineBuffer &line_buffer = line_buffers_[write_pointer_.row];
LineBuffer &sprite_selection_buffer = line_buffers_[(write_pointer_.row + 1) % mode_timing_.total_lines];
const int horizontal_offset = (write_pointer_.row >= 16 || !master_system_.horizontal_scroll_lock) ? (line_buffer.latched_horizontal_scroll >> 3) : 0;
// Determine the coarse horizontal scrolling offset; this isn't applied on the first two lines if the programmer has requested it.
LineBuffer &line_buffer = line_buffers_[write_pointer_.row];
LineBuffer &sprite_selection_buffer = line_buffers_[(write_pointer_.row + 1) % mode_timing_.total_lines];
const int horizontal_offset = (write_pointer_.row >= 16 || !master_system_.horizontal_scroll_lock) ? (line_buffer.latched_horizontal_scroll >> 3) : 0;
// Limit address bits in use if this is a SMS2 mode.
const bool is_tall_mode = mode_timing_.pixel_lines != 192;
const size_t pattern_name_address = master_system_.pattern_name_address | (is_tall_mode ? 0x800 : 0);
const size_t pattern_name_offset = is_tall_mode ? 0x100 : 0;
// Limit address bits in use if this is a SMS2 mode.
const bool is_tall_mode = mode_timing_.pixel_lines != 192;
const size_t pattern_name_address = master_system_.pattern_name_address | (is_tall_mode ? 0x800 : 0);
const size_t pattern_name_offset = is_tall_mode ? 0x100 : 0;
// Determine row info for the screen both (i) if vertical scrolling is applied; and (ii) if it isn't.
// The programmer can opt out of applying vertical scrolling to the right-hand portion of the display.
const int scrolled_row = (write_pointer_.row + master_system_.latched_vertical_scroll) % (is_tall_mode ? 256 : 224);
struct RowInfo {
size_t pattern_address_base;
size_t sub_row[2];
};
const RowInfo scrolled_row_info = {
(pattern_name_address & size_t(((scrolled_row & ~7) << 3) | 0x3800)) - pattern_name_offset,
{size_t((scrolled_row & 7) << 2), 28 ^ size_t((scrolled_row & 7) << 2)}
};
RowInfo row_info;
if(master_system_.vertical_scroll_lock) {
row_info.pattern_address_base = (pattern_name_address & size_t(((write_pointer_.row & ~7) << 3) | 0x3800)) - pattern_name_offset;
row_info.sub_row[0] = size_t((write_pointer_.row & 7) << 2);
row_info.sub_row[1] = 28 ^ size_t((write_pointer_.row & 7) << 2);
} else row_info = scrolled_row_info;
// Determine row info for the screen both (i) if vertical scrolling is applied; and (ii) if it isn't.
// The programmer can opt out of applying vertical scrolling to the right-hand portion of the display.
const int scrolled_row = (write_pointer_.row + master_system_.latched_vertical_scroll) % (is_tall_mode ? 256 : 224);
struct RowInfo {
size_t pattern_address_base;
size_t sub_row[2];
};
const RowInfo scrolled_row_info = {
(pattern_name_address & size_t(((scrolled_row & ~7) << 3) | 0x3800)) - pattern_name_offset,
{size_t((scrolled_row & 7) << 2), 28 ^ size_t((scrolled_row & 7) << 2)}
};
RowInfo row_info;
if(master_system_.vertical_scroll_lock) {
row_info.pattern_address_base = (pattern_name_address & size_t(((write_pointer_.row & ~7) << 3) | 0x3800)) - pattern_name_offset;
row_info.sub_row[0] = size_t((write_pointer_.row & 7) << 2);
row_info.sub_row[1] = 28 ^ size_t((write_pointer_.row & 7) << 2);
} else row_info = scrolled_row_info;
// ... and do the actual fetching, which follows this routine:
switch(start) {
default: assert(false);
// ... and do the actual fetching, which follows this routine:
switch(start) {
default: assert(false);
sprite_fetch_block(0, 0);
sprite_fetch_block(6, 2);
sprite_fetch_block(0, 0);
sprite_fetch_block(6, 2);
external_slots_4(12);
external_slot(16);
external_slots_4(12);
external_slot(16);
sprite_fetch_block(17, 4);
sprite_fetch_block(23, 6);
sprite_fetch_block(17, 4);
sprite_fetch_block(23, 6);
slot(29):
sprite_selection_buffer.reset_sprite_collection();
do_external_slot(29*2);
external_slot(30);
slot(29):
sprite_selection_buffer.reset_sprite_collection();
do_external_slot(29*2);
external_slot(30);
sprite_y_read(31, 0);
sprite_y_read(32, 2);
sprite_y_read(33, 4);
sprite_y_read(34, 6);
sprite_y_read(35, 8);
sprite_y_read(36, 10);
sprite_y_read(37, 12);
sprite_y_read(38, 14);
sprite_y_read(31, 0);
sprite_y_read(32, 2);
sprite_y_read(33, 4);
sprite_y_read(34, 6);
sprite_y_read(35, 8);
sprite_y_read(36, 10);
sprite_y_read(37, 12);
sprite_y_read(38, 14);
background_fetch_block(39, 0, 16, scrolled_row_info);
background_fetch_block(55, 4, 22, scrolled_row_info);
background_fetch_block(71, 8, 28, scrolled_row_info);
background_fetch_block(87, 12, 34, scrolled_row_info);
background_fetch_block(103, 16, 40, scrolled_row_info);
background_fetch_block(119, 20, 46, scrolled_row_info);
background_fetch_block(135, 24, 52, row_info);
background_fetch_block(151, 28, 58, row_info);
background_fetch_block(39, 0, 16, scrolled_row_info);
background_fetch_block(55, 4, 22, scrolled_row_info);
background_fetch_block(71, 8, 28, scrolled_row_info);
background_fetch_block(87, 12, 34, scrolled_row_info);
background_fetch_block(103, 16, 40, scrolled_row_info);
background_fetch_block(119, 20, 46, scrolled_row_info);
background_fetch_block(135, 24, 52, row_info);
background_fetch_block(151, 28, 58, row_info);
external_slots_4(167);
external_slots_4(167);
return;
}
return;
}
#undef background_fetch_block
#undef fetch_tile
@ -850,16 +849,16 @@ template <Personality personality> class Base {
#undef sprite_y_read
#undef sprite_fetch_block
#undef sprite_fetch
}
}
#undef external_slot
#undef slot
uint32_t *pixel_target_ = nullptr, *pixel_origin_ = nullptr;
bool asked_for_write_area_ = false;
void draw_tms_character(int start, int end);
void draw_tms_text(int start, int end);
void draw_sms(int start, int end, uint32_t cram_dot);
uint32_t *pixel_target_ = nullptr, *pixel_origin_ = nullptr;
bool asked_for_write_area_ = false;
void draw_tms_character(int start, int end);
void draw_tms_text(int start, int end);
void draw_sms(int start, int end, uint32_t cram_dot);
};
}