1
0
mirror of https://github.com/TomHarte/CLK.git synced 2025-01-25 09:30:14 +00:00

Merge pull request #318 from TomHarte/TMSVRAMTiming

Attempts real VRAM access timings for the TMS9918a
This commit is contained in:
Thomas Harte 2017-12-13 19:56:56 -08:00 committed by GitHub
commit 38c912b968
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 73 additions and 16 deletions

View File

@ -144,33 +144,72 @@ void TMS9918::run_for(const HalfCycles cycles) {
// potential errors mapping back and forth. // potential errors mapping back and forth.
half_cycles_into_frame_ = (half_cycles_into_frame_ + cycles) % HalfCycles(frame_lines_ * 228 * 2); half_cycles_into_frame_ = (half_cycles_into_frame_ + cycles) % HalfCycles(frame_lines_ * 228 * 2);
// Convert to 342 cycles per line; the internal clock is 1.5 times the // Convert 456 clocked half cycles per line to 342 internal cycles per line;
// nominal 3.579545 Mhz that I've advertised for this part. // the internal clock is 1.5 times the nominal 3.579545 Mhz that I've advertised
// for this part. So multiply by three quarters.
int int_cycles = (cycles.as_int() * 3) + cycles_error_; int int_cycles = (cycles.as_int() * 3) + cycles_error_;
cycles_error_ = int_cycles & 7; cycles_error_ = int_cycles & 3;
int_cycles >>= 3; int_cycles >>= 2;
if(!int_cycles) return; if(!int_cycles) return;
while(int_cycles) { while(int_cycles) {
// Determine how much time has passed in the remainder of this line, and proceed. // Determine how much time has passed in the remainder of this line, and proceed.
int cycles_left = std::min(342 - column_, int_cycles); int cycles_left = std::min(342 - column_, int_cycles);
// ------------------------------------
// Potentially perform a memory access.
// ------------------------------------
if(queued_access_ != MemoryAccess::None) {
int time_until_access_slot = 0;
switch(line_mode_) {
case LineMode::Refresh:
if(column_ < 53 || column_ >= 307) time_until_access_slot = column_&1;
else time_until_access_slot = 3 - ((column_ - 53)&3);
// i.e. 53 -> 3, 52 -> 2, 51 -> 1, 50 -> 0, etc
break;
case LineMode::Text:
if(column_ < 59 || column_ >= 299) time_until_access_slot = column_&1;
else time_until_access_slot = 5 - ((column_ + 3)%6);
// i.e. 59 -> 3, 60 -> 2, 61 -> 1, etc
break;
case LineMode::Character:
if(column_ < 9) time_until_access_slot = column_&1;
else if(column_ < 30) time_until_access_slot = 30 - column_;
else if(column_ < 37) time_until_access_slot = column_&1;
else if(column_ < 311) time_until_access_slot = 31 - ((column_ + 7)&31);
// i.e. 53 -> 3, 54 -> 2, 55 -> 1, 56 -> 0, 57 -> 31, etc
else if(column_ < 313) time_until_access_slot = column_&1;
else time_until_access_slot = 342 - column_;
break;
}
if(cycles_left >= time_until_access_slot) {
if(queued_access_ == MemoryAccess::Write) {
ram_[queued_address_] = read_ahead_buffer_;
} else {
read_ahead_buffer_ = ram_[queued_address_];
}
queued_access_ = MemoryAccess::None;
}
}
column_ += cycles_left; // column_ is now the column that has been reached in this line. column_ += cycles_left; // column_ is now the column that has been reached in this line.
int_cycles -= cycles_left; // Count down duration to run for. int_cycles -= cycles_left; // Count down duration to run for.
// ------------------------------
// TODO: memory access slot here.
// ------------------------------
// ------------------------------ // ------------------------------
// Perform video memory accesses. // Perform video memory accesses.
// ------------------------------ // ------------------------------
if(((row_ < 192) || (row_ == frame_lines_-1)) && !blank_screen_) { if(((row_ < 192) || (row_ == frame_lines_-1)) && !blank_screen_) {
const int access_slot = column_ >> 1; // There are only 171 available memory accesses per line. const int access_slot = column_ >> 1; // There are only 171 available memory accesses per line.
switch(line_mode_) { switch(line_mode_) {
default: break;
case LineMode::Text: case LineMode::Text:
access_pointer_ = std::min(30, access_slot); access_pointer_ = std::min(30, access_slot);
if(access_pointer_ >= 30 && access_pointer_ < 150) { if(access_pointer_ >= 30 && access_pointer_ < 150) {
@ -327,6 +366,8 @@ void TMS9918::run_for(const HalfCycles cycles) {
if(output_column_ < pixels_end) { if(output_column_ < pixels_end) {
switch(line_mode_) { switch(line_mode_) {
default: break;
case LineMode::Text: { case LineMode::Text: {
const uint32_t colours[2] = { palette[background_colour_], palette[text_colour_] }; const uint32_t colours[2] = { palette[background_colour_], palette[text_colour_] };
@ -499,6 +540,7 @@ void TMS9918::run_for(const HalfCycles cycles) {
first_right_border_column_ = 319; first_right_border_column_ = 319;
break; break;
} }
if(blank_screen_ || (row_ >= 192 && row_ != frame_lines_-1)) line_mode_ = LineMode::Refresh;
} }
} }
} }
@ -509,15 +551,17 @@ void TMS9918::output_border(int cycles) {
crt_->output_level(static_cast<unsigned int>(cycles) * 4); crt_->output_level(static_cast<unsigned int>(cycles) * 4);
} }
// TODO: as a temporary development measure, memory access below is magically instantaneous. Correct that.
void TMS9918::set_register(int address, uint8_t value) { void TMS9918::set_register(int address, uint8_t value) {
// Writes to address 0 are writes to the video RAM. Store // Writes to address 0 are writes to the video RAM. Store
// the value and return. // the value and return.
if(!(address & 1)) { if(!(address & 1)) {
write_phase_ = false; write_phase_ = false;
read_ahead_buffer_ = value; read_ahead_buffer_ = value;
ram_[ram_pointer_ & 16383] = value;
// Enqueue the write to occur at the next available slot.
queued_access_ = MemoryAccess::Write;
queued_address_ = ram_pointer_ & 16383;
ram_pointer_++; ram_pointer_++;
return; return;
} }
@ -594,7 +638,11 @@ uint8_t TMS9918::get_register(int address) {
// Reads from address 0 read video RAM, via the read-ahead buffer. // Reads from address 0 read video RAM, via the read-ahead buffer.
if(!(address & 1)) { if(!(address & 1)) {
uint8_t result = read_ahead_buffer_; uint8_t result = read_ahead_buffer_;
read_ahead_buffer_ = ram_[ram_pointer_ & 16383];
// Enqueue the write to occur at the next available slot.
queued_access_ = MemoryAccess::Read;
queued_address_ = ram_pointer_ & 16383;
ram_pointer_++; ram_pointer_++;
return result; return result;
} }

View File

@ -65,6 +65,10 @@ class TMS9918 {
uint16_t ram_pointer_ = 0; uint16_t ram_pointer_ = 0;
uint8_t read_ahead_buffer_ = 0; uint8_t read_ahead_buffer_ = 0;
enum class MemoryAccess {
Read, Write, None
} queued_access_ = MemoryAccess::None;
uint16_t queued_address_;
uint8_t status_ = 0; uint8_t status_ = 0;
@ -100,8 +104,9 @@ class TMS9918 {
// Horizontal selections. // Horizontal selections.
enum class LineMode { enum class LineMode {
Text, Text = 0,
Character Character = 1,
Refresh = 2
} line_mode_ = LineMode::Text; } line_mode_ = LineMode::Text;
int first_pixel_column_, first_right_border_column_; int first_pixel_column_, first_right_border_column_;

View File

@ -175,6 +175,10 @@ class ConcreteMachine:
} }
} break; } break;
case CPU::Z80::PartialMachineCycle::Interrupt:
*cycle.value = 0xff;
break;
default: break; default: break;
} }