mirror of
https://github.com/TomHarte/CLK.git
synced 2024-11-21 21:33:54 +00:00
Begin new state machine, losing all non-cursor pixels.
This commit is contained in:
parent
b82af9c471
commit
38d096cad6
@ -26,7 +26,7 @@ struct Video {
|
||||
ram_(ram),
|
||||
crt_(Outputs::Display::InputDataType::Red4Green4Blue4) {
|
||||
set_clock_divider(3);
|
||||
crt_.set_visible_area(Outputs::Display::Rect(0.06f, 0.07f, 0.9f, 0.9f));
|
||||
// crt_.set_visible_area(Outputs::Display::Rect(0.06f, 0.07f, 0.9f, 0.9f));
|
||||
crt_.set_display_type(Outputs::Display::DisplayType::RGB);
|
||||
}
|
||||
|
||||
@ -131,9 +131,10 @@ struct Video {
|
||||
horizontal_state_.increment_position(horizontal_timing_);
|
||||
|
||||
if(horizontal_state_.did_restart()) {
|
||||
end_horizontal();
|
||||
|
||||
const auto old_phase = vertical_state_.phase();
|
||||
vertical_state_.increment_position(vertical_timing_);
|
||||
pixel_count_ = 0;
|
||||
|
||||
const auto phase = vertical_state_.phase();
|
||||
if(phase != old_phase) {
|
||||
@ -167,158 +168,14 @@ struct Video {
|
||||
cursor_pixel_ = 32;
|
||||
}
|
||||
|
||||
// Accumulate total phase.
|
||||
++time_in_phase_;
|
||||
|
||||
// Determine current output phase.
|
||||
Phase new_phase;
|
||||
// Move along line.
|
||||
switch(vertical_state_.phase()) {
|
||||
case Phase::Sync: new_phase = Phase::Sync; break;
|
||||
case Phase::Blank: new_phase = Phase::Blank; break;
|
||||
case Phase::Border:
|
||||
new_phase = horizontal_state_.phase() == Phase::Display ? Phase::Border : horizontal_state_.phase();
|
||||
break;
|
||||
case Phase::Display:
|
||||
new_phase = horizontal_state_.phase();
|
||||
break;
|
||||
case Phase::Sync: tick_horizontal<Phase::Sync>(); break;
|
||||
case Phase::Blank: tick_horizontal<Phase::Blank>(); break;
|
||||
case Phase::Border: tick_horizontal<Phase::Border>(); break;
|
||||
case Phase::Display: tick_horizontal<Phase::Display>(); break;
|
||||
}
|
||||
|
||||
const auto flush_pixels = [&]() {
|
||||
const auto duration = static_cast<int>(time_in_phase_);
|
||||
crt_.output_data(duration, static_cast<size_t>(time_in_phase_) * 2);
|
||||
time_in_phase_ = 0;
|
||||
pixels_ = nullptr;
|
||||
};
|
||||
|
||||
// Possibly output something.
|
||||
if(new_phase != phase_ || (phase_ == Phase::Border && phased_border_colour_ != border_colour_)) {
|
||||
if(time_in_phase_) {
|
||||
const auto duration = static_cast<int>(time_in_phase_);
|
||||
|
||||
switch(phase_) {
|
||||
case Phase::Sync: crt_.output_sync(duration); break;
|
||||
case Phase::Blank: crt_.output_blank(duration); break;
|
||||
case Phase::Display: flush_pixels(); break;
|
||||
case Phase::Border: crt_.output_level<uint16_t>(duration, phased_border_colour_); break;
|
||||
}
|
||||
time_in_phase_ = 0;
|
||||
}
|
||||
phase_ = new_phase;
|
||||
phased_border_colour_ = border_colour_;
|
||||
}
|
||||
|
||||
// Update cursor pixel counter if applicable; this might mean triggering it
|
||||
// and it might just mean advancing it if it has already been triggered.
|
||||
if(vertical_state_.cursor_active) {
|
||||
const auto pixel_position = horizontal_state_.position << 1;
|
||||
if(pixel_position <= horizontal_timing_.cursor_start && (pixel_position + 2) > horizontal_timing_.cursor_start) {
|
||||
cursor_pixel_ = int(horizontal_timing_.cursor_start) - int(pixel_position);
|
||||
}
|
||||
}
|
||||
|
||||
// Grab some more pixels if appropriate.
|
||||
if(vertical_state_.display_active() && horizontal_state_.display_active()) {
|
||||
const auto next_byte = [&]() -> uint8_t {
|
||||
const auto next = ram_[address_];
|
||||
++address_;
|
||||
|
||||
// `buffer_end_` is the final address that a 16-byte block will be fetched from;
|
||||
// the +16 here papers over the fact that I'm not accurately implementing DMA.
|
||||
if(address_ == buffer_end_ + 16) {
|
||||
address_ = buffer_start_;
|
||||
}
|
||||
return next;
|
||||
};
|
||||
|
||||
switch(colour_depth_) {
|
||||
case Depth::EightBPP:
|
||||
pixel_data_[0] = next_byte();
|
||||
pixel_data_[1] = next_byte();
|
||||
break;
|
||||
case Depth::FourBPP:
|
||||
pixel_data_[0] = next_byte();
|
||||
break;
|
||||
case Depth::TwoBPP:
|
||||
if(!(pixel_count_&1)) {
|
||||
pixel_data_[0] = next_byte();
|
||||
}
|
||||
break;
|
||||
case Depth::OneBPP:
|
||||
if(!(pixel_count_&3)) {
|
||||
pixel_data_[0] = next_byte();
|
||||
}
|
||||
break;
|
||||
}
|
||||
++pixel_count_;
|
||||
}
|
||||
|
||||
if(phase_ == Phase::Display) {
|
||||
if(pixels_ && time_in_phase_ == PixelBufferSize/2) {
|
||||
flush_pixels();
|
||||
}
|
||||
|
||||
if(!pixels_) {
|
||||
if(time_in_phase_) {
|
||||
flush_pixels();
|
||||
}
|
||||
|
||||
pixels_ = reinterpret_cast<uint16_t *>(crt_.begin_data(PixelBufferSize));
|
||||
}
|
||||
|
||||
if(pixels_) {
|
||||
// Each tick in here is two ticks of the pixel clock, so:
|
||||
//
|
||||
// 8bpp mode: output two bytes;
|
||||
// 4bpp mode: output one byte;
|
||||
// 2bpp mode: output one byte every second tick;
|
||||
// 1bpp mode: output one byte every fourth tick.
|
||||
switch(colour_depth_) {
|
||||
case Depth::EightBPP:
|
||||
pixels_[0] = (colours_[pixel_data_[0] & 0xf] & colour(0b0111'0011'0111)) | high_spread[pixel_data_[0] >> 4];
|
||||
pixels_[1] = (colours_[pixel_data_[1] & 0xf] & colour(0b0111'0011'0111)) | high_spread[pixel_data_[1] >> 4];
|
||||
break;
|
||||
|
||||
case Depth::FourBPP:
|
||||
pixels_[0] = colours_[pixel_data_[0] & 0xf];
|
||||
pixels_[1] = colours_[pixel_data_[0] >> 4];
|
||||
break;
|
||||
|
||||
case Depth::TwoBPP:
|
||||
pixels_[0] = colours_[pixel_data_[0] & 3];
|
||||
pixels_[1] = colours_[(pixel_data_[0] >> 2) & 3];
|
||||
pixel_data_[0] >>= 4;
|
||||
break;
|
||||
|
||||
case Depth::OneBPP:
|
||||
pixels_[0] = colours_[pixel_data_[0] & 1];
|
||||
pixels_[1] = colours_[(pixel_data_[0] >> 1) & 1];
|
||||
pixel_data_[0] >>= 2;
|
||||
break;
|
||||
}
|
||||
|
||||
// Overlay cursor if applicable.
|
||||
// TODO: pull this so far out that the cursor can display over the border, too.
|
||||
if(cursor_pixel_ < 32) {
|
||||
if(cursor_pixel_ >= 0) {
|
||||
const auto pixel = cursor_image_[static_cast<size_t>(cursor_pixel_)];
|
||||
if(pixel) {
|
||||
pixels_[0] = cursor_colours_[pixel];
|
||||
}
|
||||
}
|
||||
if(cursor_pixel_ < 31) {
|
||||
const auto pixel = cursor_image_[static_cast<size_t>(cursor_pixel_ + 1)];
|
||||
if(pixel) {
|
||||
pixels_[1] = cursor_colours_[pixel];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pixels_ += 2;
|
||||
}
|
||||
}
|
||||
|
||||
// Advance cursor position.
|
||||
if(cursor_pixel_ < 32) cursor_pixel_ += 2;
|
||||
++time_in_phase_;
|
||||
}
|
||||
|
||||
/// @returns @c true if a vertical retrace interrupt has been signalled since the last call to @c interrupt(); @c false otherwise.
|
||||
@ -433,14 +290,16 @@ private:
|
||||
};
|
||||
State<false> horizontal_state_;
|
||||
State<true> vertical_state_;
|
||||
Phase phase_ = Phase::Sync;
|
||||
uint32_t time_in_phase_ = 0;
|
||||
uint32_t pixel_count_ = 0;
|
||||
uint16_t *pixels_ = nullptr;
|
||||
|
||||
int time_in_phase_ = 0;
|
||||
Phase phase_;
|
||||
uint16_t phased_border_colour_;
|
||||
|
||||
uint32_t pixel_count_ = 0;
|
||||
uint16_t *pixels_ = nullptr;
|
||||
|
||||
// It is elsewhere assumed that this size is a multiple of 8.
|
||||
static constexpr size_t PixelBufferSize = 320;
|
||||
static constexpr size_t PixelBufferSize = 256;
|
||||
|
||||
// Programmer-set addresses.
|
||||
uint32_t buffer_start_ = 0;
|
||||
@ -499,6 +358,196 @@ private:
|
||||
Outputs::CRT::PAL::AlternatesPhase);
|
||||
clock_rate_observer_.update_clock_rates();
|
||||
}
|
||||
|
||||
void flush_pixels() {
|
||||
crt_.output_data(time_in_phase_, static_cast<size_t>(pixel_count_));
|
||||
time_in_phase_ = 0;
|
||||
pixel_count_ = 0;
|
||||
pixels_ = nullptr;
|
||||
}
|
||||
|
||||
void set_phase(Phase phase) {
|
||||
if(time_in_phase_) {
|
||||
switch(phase_) {
|
||||
case Phase::Sync: crt_.output_sync(time_in_phase_); break;
|
||||
case Phase::Blank: crt_.output_blank(time_in_phase_); break;
|
||||
case Phase::Border: crt_.output_level<uint16_t>(time_in_phase_, phased_border_colour_); break;
|
||||
case Phase::Display: flush_pixels(); break;
|
||||
}
|
||||
}
|
||||
|
||||
phase_ = phase;
|
||||
time_in_phase_ = 0;
|
||||
phased_border_colour_ = border_colour_;
|
||||
pixel_count_ = 0;
|
||||
}
|
||||
|
||||
void end_horizontal() {
|
||||
set_phase(Phase::Sync);
|
||||
}
|
||||
|
||||
template <Phase vertical_phase> void tick_horizontal() {
|
||||
// Sync lines: obey nothing. All sync, all the time.
|
||||
if constexpr (vertical_phase == Phase::Sync) {
|
||||
return;
|
||||
}
|
||||
|
||||
// Blank lines: obey only the transition from sync to non-sync.
|
||||
if constexpr (vertical_phase == Phase::Blank) {
|
||||
if(phase_ == Phase::Sync && horizontal_state_.phase() != Phase::Sync) {
|
||||
set_phase(Phase::Blank);
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
// Border lines: ignore display phases; also reset the border phase if the colour changes.
|
||||
const auto horizontal_phase = horizontal_state_.phase();
|
||||
const auto phase = horizontal_phase != Phase::Display ? horizontal_phase : Phase::Border;
|
||||
|
||||
if(phase != phase_ || (phase_ == Phase::Border && border_colour_ != phased_border_colour_)) {
|
||||
set_phase(phase);
|
||||
}
|
||||
}
|
||||
|
||||
template <>
|
||||
void tick_horizontal<Phase::Display>() {
|
||||
// Some timing facts, to explain what would otherwise be magic constants.
|
||||
static constexpr int CursorDelay = 6; // The cursor will appear six pixels after its programmed trigger point.
|
||||
// static constexpr int Delay1bpp = 19;
|
||||
// static constexpr int Delay2bpp = 11;
|
||||
// static constexpr int Delay4bpp = 7;
|
||||
// static constexpr int Delay8bpp = 7;
|
||||
|
||||
// Deal with sync and blank via set_phase(); collapse display and border into Phase::Display.
|
||||
const auto horizontal_phase = horizontal_state_.phase();
|
||||
const auto phase = horizontal_phase == Phase::Border ? Phase::Display : horizontal_phase;
|
||||
if(phase != phase_) set_phase(phase);
|
||||
|
||||
// Update cursor pixel counter if applicable; this might mean triggering it
|
||||
// and it might just mean advancing it if it has already been triggered.
|
||||
if(vertical_state_.cursor_active) {
|
||||
const auto pixel_position = horizontal_state_.position << 1;
|
||||
if(pixel_position <= horizontal_timing_.cursor_start && (pixel_position + 2) > horizontal_timing_.cursor_start) {
|
||||
cursor_pixel_ = int(horizontal_timing_.cursor_start) - int(pixel_position) - CursorDelay;
|
||||
}
|
||||
}
|
||||
|
||||
// TODO: if in the display phase, do some fetching.
|
||||
|
||||
// If this is not [collapsed] Phase::Display, just stop here.
|
||||
if(phase_ != Phase::Display) return;
|
||||
|
||||
// Display phase: maintain an output buffer (if available).
|
||||
if(pixel_count_ == PixelBufferSize) flush_pixels();
|
||||
if(!pixel_count_) pixels_ = reinterpret_cast<uint16_t *>(crt_.begin_data(PixelBufferSize));
|
||||
|
||||
// TOOD: proper here.
|
||||
if(pixels_) {
|
||||
pixels_[0] = border_colour_;
|
||||
pixels_[1] = border_colour_;
|
||||
|
||||
// Overlay cursor if applicable.
|
||||
if(cursor_pixel_ < 32) {
|
||||
if(cursor_pixel_ >= 0) {
|
||||
const auto pixel = cursor_image_[static_cast<size_t>(cursor_pixel_)];
|
||||
if(pixel) {
|
||||
pixels_[0] = cursor_colours_[pixel];
|
||||
}
|
||||
}
|
||||
if(cursor_pixel_ >= -1 && cursor_pixel_ < 31) {
|
||||
const auto pixel = cursor_image_[static_cast<size_t>(cursor_pixel_ + 1)];
|
||||
if(pixel) {
|
||||
pixels_[1] = cursor_colours_[pixel];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pixels_ += 2;
|
||||
}
|
||||
|
||||
cursor_pixel_ += 2;
|
||||
pixel_count_ += 2;
|
||||
}
|
||||
|
||||
// // Grab some more pixels if appropriate.
|
||||
// if(vertical_state_.display_active() && horizontal_state_.display_active()) {
|
||||
// const auto next_byte = [&]() -> uint8_t {
|
||||
// const auto next = ram_[address_];
|
||||
// ++address_;
|
||||
//
|
||||
// // `buffer_end_` is the final address that a 16-byte block will be fetched from;
|
||||
// // the +16 here papers over the fact that I'm not accurately implementing DMA.
|
||||
// if(address_ == buffer_end_ + 16) {
|
||||
// address_ = buffer_start_;
|
||||
// }
|
||||
// return next;
|
||||
// };
|
||||
//
|
||||
// switch(colour_depth_) {
|
||||
// case Depth::EightBPP:
|
||||
// pixel_data_[0] = next_byte();
|
||||
// pixel_data_[1] = next_byte();
|
||||
// break;
|
||||
// case Depth::FourBPP:
|
||||
// pixel_data_[0] = next_byte();
|
||||
// break;
|
||||
// case Depth::TwoBPP:
|
||||
// if(!(pixel_count_&1)) {
|
||||
// pixel_data_[0] = next_byte();
|
||||
// }
|
||||
// break;
|
||||
// case Depth::OneBPP:
|
||||
// if(!(pixel_count_&3)) {
|
||||
// pixel_data_[0] = next_byte();
|
||||
// }
|
||||
// break;
|
||||
// }
|
||||
// ++pixel_count_;
|
||||
// }
|
||||
//
|
||||
// if(phase_ == Phase::Display) {
|
||||
// if(pixels_ && time_in_phase_ == PixelBufferSize/2) {
|
||||
// flush_pixels();
|
||||
// }
|
||||
//
|
||||
// if(!pixels_) {
|
||||
// if(time_in_phase_) {
|
||||
// flush_pixels();
|
||||
// }
|
||||
//
|
||||
// pixels_ = reinterpret_cast<uint16_t *>(crt_.begin_data(PixelBufferSize));
|
||||
// }
|
||||
//
|
||||
// if(pixels_) {
|
||||
// // Each tick in here is two ticks of the pixel clock, so:
|
||||
// //
|
||||
// // 8bpp mode: output two bytes;
|
||||
// // 4bpp mode: output one byte;
|
||||
// // 2bpp mode: output one byte every second tick;
|
||||
// // 1bpp mode: output one byte every fourth tick.
|
||||
// switch(colour_depth_) {
|
||||
// case Depth::EightBPP:
|
||||
// pixels_[0] = (colours_[pixel_data_[0] & 0xf] & colour(0b0111'0011'0111)) | high_spread[pixel_data_[0] >> 4];
|
||||
// pixels_[1] = (colours_[pixel_data_[1] & 0xf] & colour(0b0111'0011'0111)) | high_spread[pixel_data_[1] >> 4];
|
||||
// break;
|
||||
//
|
||||
// case Depth::FourBPP:
|
||||
// pixels_[0] = colours_[pixel_data_[0] & 0xf];
|
||||
// pixels_[1] = colours_[pixel_data_[0] >> 4];
|
||||
// break;
|
||||
//
|
||||
// case Depth::TwoBPP:
|
||||
// pixels_[0] = colours_[pixel_data_[0] & 3];
|
||||
// pixels_[1] = colours_[(pixel_data_[0] >> 2) & 3];
|
||||
// pixel_data_[0] >>= 4;
|
||||
// break;
|
||||
//
|
||||
// case Depth::OneBPP:
|
||||
// pixels_[0] = colours_[pixel_data_[0] & 1];
|
||||
// pixels_[1] = colours_[(pixel_data_[0] >> 1) & 1];
|
||||
// pixel_data_[0] >>= 2;
|
||||
// break;
|
||||
// }
|
||||
};
|
||||
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user