1
0
mirror of https://github.com/TomHarte/CLK.git synced 2025-01-13 22:32:03 +00:00

Switches to a mapping system that supports non-continuous regions, and is smaller.

This commit is contained in:
Thomas Harte 2020-10-25 18:28:32 -04:00
parent 7631b11c55
commit 44fc08cd5b

View File

@ -16,6 +16,9 @@
#include "../AppleII/LanguageCardSwitches.hpp"
#include "../AppleII/AuxiliaryMemorySwitches.hpp"
#include <cassert>
#include <array>
namespace Apple {
namespace IIgs {
@ -69,33 +72,159 @@ class ConcreteMachine:
}
ram_.resize(ram_size * 1024);
// Establish bank storage.
// Establish bank mapping.
uint8_t next_region = 0;
auto region = [&next_region, this]() -> uint8_t {
assert(next_region != memory_regions_.size());
return next_region++;
};
auto set_region = [this](uint8_t bank, uint16_t start, uint16_t end, uint8_t region) {
assert((end == 0xffff) || !(end&0xff));
assert(!(start&0xff));
// Fast RAM storage.
for(size_t c = 0; c < 0x80; ++c) {
if(c * 64 < (ram_size - 128)) {
bank_storage_[c].read = bank_storage_[c].write = &ram_[c * 0x10000];
// Fill in memory map.
size_t target = size_t((bank << 8) | (start >> 8));
for(int c = start; c < end; c += 0x100) {
memory_map_[target] = region;
++target;
}
};
// Current beliefs about the IIgs memory map:
//
// * language card banking applies to banks $00, $01, $e0 and $e1;
// * auxiliary memory switches apply to banks $00 only;
// * shadowing may be enabled only on banks $00 and $01, or on all RAM pages.
//
// So banks $00 and $01 need their own divided spaces at the shadowing resolution,
// all the other fast RAM banks can share a set of divided spaces, $e0 and $e1 need
// to be able to deal with language card-level division but no further, and the pure
// ROM pages don't need to be subdivided at all.
// Reserve region 0 as that for unmapped memory.
region();
// Bank $00: all locations potentially affected by the auxiliary switches or the
// language switches. Which will naturally align with shadowable zones.
set_region(0x00, 0x0000, 0x0200, region());
set_region(0x00, 0x0200, 0x0400, region());
set_region(0x00, 0x0400, 0x0800, region());
set_region(0x00, 0x0800, 0x2000, region());
set_region(0x00, 0x2000, 0x4000, region());
set_region(0x00, 0x4000, 0xc000, region());
set_region(0x00, 0xc000, 0xc100, region());
set_region(0x00, 0xc100, 0xc300, region());
set_region(0x00, 0xc300, 0xc400, region());
set_region(0x00, 0xc400, 0xc800, region());
set_region(0x00, 0xc800, 0xd000, region());
set_region(0x00, 0xd000, 0xe000, region());
set_region(0x00, 0xe000, 0xffff, region());
// Bank $01: all locations potentially affected by the language switches, by shadowing,
// or marked for IO.
set_region(0x01, 0x0000, 0x0400, region());
set_region(0x01, 0x0400, 0x0800, region());
set_region(0x01, 0x0800, 0x0c00, region());
set_region(0x01, 0x0c00, 0x2000, region());
set_region(0x01, 0x2000, 0x4000, region());
set_region(0x01, 0x4000, 0x6000, region());
set_region(0x01, 0x6000, 0xa000, region());
set_region(0x01, 0xa000, 0xc000, region());
set_region(0x01, 0xc000, 0xd000, region());
set_region(0x01, 0xd000, 0xe000, region());
set_region(0x01, 0xe000, 0xffff, region());
// Banks $02[end of RAM]: all locations potentially affected by shadowing.
const uint8_t fast_ram_bank_count = uint8_t((ram_size - 128)/64);
if(fast_ram_bank_count > 2) {
const uint8_t evens[] = {
region(), // 0x0000 0x0400.
region(), // 0x0400 0x0800.
region(), // 0x0800 0x0c00.
region(), // 0x0c00 0x2000.
region(), // 0x2000 0x4000.
region(), // 0x4000 0x6000.
region(), // 0x6000 [end].
};
const uint8_t odds[] = {
region(), // 0x0000 0x0400.
region(), // 0x0400 0x0800.
region(), // 0x0800 0x0c00.
region(), // 0x0c00 0x2000.
region(), // 0x2000 0x4000.
region(), // 0x4000 0x6000.
region(), // 0x6000 0xa000.
region(), // 0xa000 [end].
};
for(uint8_t bank = 0x02; bank < fast_ram_bank_count; bank += 2) {
set_region(bank, 0x0000, 0x0400, evens[0]);
set_region(bank, 0x0400, 0x0800, evens[1]);
set_region(bank, 0x0800, 0x0c00, evens[2]);
set_region(bank, 0x0c00, 0x2000, evens[3]);
set_region(bank, 0x2000, 0x4000, evens[4]);
set_region(bank, 0x4000, 0x6000, evens[5]);
set_region(bank, 0x6000, 0xffff, evens[6]);
set_region(bank+1, 0x0000, 0x0400, odds[0]);
set_region(bank+1, 0x0400, 0x0800, odds[1]);
set_region(bank+1, 0x0800, 0x0c00, odds[2]);
set_region(bank+1, 0x0c00, 0x2000, odds[3]);
set_region(bank+1, 0x2000, 0x4000, odds[4]);
set_region(bank+1, 0x4000, 0x6000, odds[5]);
set_region(bank+1, 0x6000, 0xa000, odds[6]);
set_region(bank+1, 0xa000, 0xffff, odds[7]);
}
}
// Mega II RAM storage.
bank_storage_[0xe0].read = bank_storage_[0xe0].write = &ram_[ram_.size() - 0x20000];
bank_storage_[0xe1].read = bank_storage_[0xe1].write = &ram_[ram_.size() - 0x10000];
// [Banks $80$e0: empty].
// ROM storage.
const size_t rom_page_count = rom_.size() >> 16;
const size_t first_rom_page = 0x100 - rom_page_count;
for(size_t c = 0; c < rom_page_count; ++c) {
bank_storage_[first_rom_page + c].read = &rom_[c * 0x10000];
// Banks $e0, $e1: all locations potentially affected by the language switches or marked for IO.
for(uint8_t c = 0; c < 2; c++) {
set_region(0xe0 + c, 0x0000, 0xc000, region());
set_region(0xe0 + c, 0xc000, 0xd000, region());
set_region(0xe0 + c, 0xd000, 0xffff, region());
}
// Establish initial bank mapping.
for(size_t c = 0; c < 65536; ++c) {
bank_mapping_[c].destination = uint8_t(c >> 8);
// [Banks $e2[ROM start]: empty].
// ROM banks: directly mapped to ROM.
const uint8_t rom_bank_count = uint8_t(rom_.size() >> 16);
const uint8_t first_rom_bank = uint8_t(0x100 - rom_bank_count);
const uint8_t rom_region = region();
for(uint8_t c = 0; c < rom_bank_count; ++c) {
set_region(first_rom_bank + c, 0x0000, 0xff00, rom_region);
}
for(size_t c = 0; c < 256; ++c) {
bank_mapping_[0xe000 + c].flags = BankMapping::Is1Mhz;
bank_mapping_[0xe100 + c].flags = BankMapping::Is1Mhz;
// Apply proper storage to those banks.
auto set_storage = [this](uint32_t address, const uint8_t *read, uint8_t *write) {
// Don't allow the reserved null region to be modified.
assert(memory_map_[address >> 8]);
// Either set or apply a quick bit of testing as to the logic at play.
auto &region = memory_regions_[memory_map_[address >> 8]];
if(read) read -= address;
if(write) write -= address;
if(!region.read) {
region.read = read;
region.write = write;
} else {
assert(region.read == read);
assert(region.write == write);
}
};
// This is highly redundant, but decouples this step from the above.
for(size_t c = 0; c < 0x800000; c += 0x100) {
if(c < (ram_size - 128)*1024) {
set_storage(uint32_t(c), &ram_[c], &ram_[c]);
}
}
uint8_t *const slow_ram = &ram_[ram_.size() - 0x20000];
for(size_t c = 0xe00000; c < 0xe20000; c += 0x100) {
set_storage(uint32_t(c), &slow_ram[c - 0xe00000], &slow_ram[c - 0xe00000]);
}
for(uint32_t c = 0; c < uint32_t(rom_bank_count); ++c) {
set_storage((first_rom_bank + c) << 16, &rom_[c << 16], &rom_[c << 16]);
}
// Apply initial language/auxiliary state. [TODO: including shadowing register].
@ -116,37 +245,38 @@ class ConcreteMachine:
}
forceinline Cycles perform_bus_operation(const CPU::WDC65816::BusOperation operation, const uint32_t address, uint8_t *const value) {
const BankMapping &mapping = bank_mapping_[address >> 8];
const MemoryRegion &region = memory_regions_[memory_map_[address >> 8]];
if(mapping.flags & BankMapping::IsIO) {
if(region.flags & MemoryRegion::IsIO) {
// TODO: all IO accesses.
} else {
const BankStorage &storage = bank_storage_[mapping.destination];
// TODO: branching below is predicated on the idea that an extra 64kb of scratch write area
// and 64kb of 0xffs would be worse than branching due to the data set increase. Verify that?
if(isReadOperation(operation)) {
*value = storage.read ? storage.read[address & 0xffff] : 0xff;
*value = region.read ? region.read[address] : 0xff;
} else {
if(storage.write) {
storage.write[address & 0xffff] = *value;
if(mapping.flags & BankMapping::IsShadowed) {
bank_storage_[mapping.destination + 0xe0].write[address & 0xffff] = *value;
if(region.write) {
region.write[address] = *value;
// Apply shadowing.
if(region.flags & (MemoryRegion::IsShadowedE0|MemoryRegion::IsShadowedE1)) {
const uint32_t shadowed_address = (address & 0xffff) + (uint32_t(0xe1 - (region.flags&MemoryRegion::IsShadowedE0)) << 16);
memory_regions_[memory_map_[shadowed_address >> 8]].write[shadowed_address] = *value;
}
}
}
}
Cycles duration;
Cycles duration = Cycles(5);
// Determine the cost of this access.
if((mapping.flags & BankMapping::Is1Mhz) || ((mapping.flags & BankMapping::IsShadowed) && !isReadOperation(operation))) {
// TODO: (i) get into phase; (ii) allow for the 1Mhz bus length being sporadically 16 rather than 14.
duration = Cycles(14);
} else {
// TODO: (i) get into phase; (ii) allow for collisions with the refresh cycle.
duration = Cycles(5);
}
// TODO: determine the cost of this access.
// if((mapping.flags & BankMapping::Is1Mhz) || ((mapping.flags & BankMapping::IsShadowed) && !isReadOperation(operation))) {
// // TODO: (i) get into phase; (ii) allow for the 1Mhz bus length being sporadically 16 rather than 14.
// duration = Cycles(14);
// } else {
// // TODO: (i) get into phase; (ii) allow for collisions with the refresh cycle.
// duration = Cycles(5);
// }
fast_access_phase_ = (fast_access_phase_ + duration.as<int>()) % 5; // TODO: modulo something else, to allow for refresh.
slow_access_phase_ = (slow_access_phase_ + duration.as<int>()) % 14; // TODO: modulo something else, to allow for stretched cycles.
return duration;
@ -173,34 +303,31 @@ class ConcreteMachine:
// MARK: - Memory layout and storage.
// Memory layout part 1: the bank mapping. Indexed by the top 16 bits of the address,
// each entry provides the actual bank that should be used plus some flags affecting the
// access: whether this section of memory is currently enabled for shadowing, whether
// accesses should cost 1 Mhz, and whether this is actually an IO area.
// Memory layout here is done via double indirection; the main loop should:
// (i) use the top two bytes of the address to get an index from memory_map_; and
// (ii) use that to index the memory_regions_ table.
//
// Implementation note: the shadow and IO flags are more sensibly part of this table;
// logically the 1Mhz flag would ideally go with BankStorage but since there's no space
// in there currently set aside for flags, keeping it in the mapping will do.
struct BankMapping {
uint8_t destination = 0;
// Pointers are eight bytes at the time of writing, so the extra level of indirection
// reduces what would otherwise be a 1.25mb table down to not a great deal more than 64kb.
std::array<uint8_t, 65536> memory_map_;
struct MemoryRegion {
uint8_t *write = nullptr;
const uint8_t *read = nullptr;
uint8_t flags = 0;
enum Flag: uint8_t {
IsShadowed = 1 << 0,
Is1Mhz = 1 << 1,
IsIO = 1 << 2,
IsShadowedE0 = 1 << 0, // i.e. writes should also be written to bank $e0, and costed appropriately.
IsShadowedE1 = 1 << 1, // i.e. writes should also be written to bank $e1, and costed appropriately.
Is1Mhz = 1 << 2, // Both reads and writes should be synchronised with the 1Mhz clock.
IsIO = 1 << 3, // Indicates that this region should be checked for soft switches, registers, etc.
};
};
static_assert(sizeof(BankMapping) == 2);
BankMapping bank_mapping_[65536];
std::array<MemoryRegion, 47> memory_regions_; // The assert above ensures that this is large enough; there's no
// doctrinal reason for it to be whatever size it is now, just
// adjust as required.
// Memory layout part 2: the bank storage. For each bank both a read and a write pointer
// are offered, indicating where the contents of this bank actually reside.
struct BankStorage {
uint8_t *write = nullptr;
const uint8_t *read = nullptr;
};
BankStorage bank_storage_[256];
// MARK: - Memory storage.
// Actual memory storage.
std::vector<uint8_t> ram_;