mirror of
https://github.com/TomHarte/CLK.git
synced 2024-11-23 03:32:32 +00:00
Merge pull request #588 from TomHarte/SeparateChromaBuffer
Reintroduces a separate chrominance buffer
This commit is contained in:
commit
5d68a5bdd0
@ -28,12 +28,19 @@
|
||||
|
||||
#include "../../Analyser/Static/AppleII/Target.hpp"
|
||||
#include "../../ClockReceiver/ForceInline.hpp"
|
||||
#include "../../Configurable/StandardOptions.hpp"
|
||||
|
||||
#include <algorithm>
|
||||
#include <array>
|
||||
#include <memory>
|
||||
|
||||
namespace {
|
||||
namespace AppleII {
|
||||
|
||||
std::vector<std::unique_ptr<Configurable::Option>> get_options() {
|
||||
return Configurable::standard_options(
|
||||
static_cast<Configurable::StandardOptions>(Configurable::DisplayCompositeMonochrome | Configurable::DisplayCompositeColour)
|
||||
);
|
||||
}
|
||||
|
||||
#define is_iie() ((model == Analyser::Static::AppleII::Target::Model::IIe) || (model == Analyser::Static::AppleII::Target::Model::EnhancedIIe))
|
||||
|
||||
@ -43,6 +50,7 @@ template <Analyser::Static::AppleII::Target::Model model> class ConcreteMachine:
|
||||
public KeyboardMachine::MappedMachine,
|
||||
public CPU::MOS6502::BusHandler,
|
||||
public Inputs::Keyboard,
|
||||
public Configurable::Device,
|
||||
public AppleII::Machine,
|
||||
public Activity::Source,
|
||||
public JoystickMachine::Machine,
|
||||
@ -84,7 +92,6 @@ template <Analyser::Static::AppleII::Target::Model model> class ConcreteMachine:
|
||||
|
||||
uint8_t ram_[65536], aux_ram_[65536];
|
||||
std::vector<uint8_t> rom_;
|
||||
// std::vector<uint8_t> character_rom_;
|
||||
uint8_t keyboard_input_ = 0x00;
|
||||
bool key_is_down_ = false;
|
||||
|
||||
@ -401,6 +408,11 @@ template <Analyser::Static::AppleII::Target::Model model> class ConcreteMachine:
|
||||
video_.set_scan_target(scan_target);
|
||||
}
|
||||
|
||||
/// Sets the type of display.
|
||||
void set_display_type(Outputs::Display::DisplayType display_type) override {
|
||||
video_.set_display_type(display_type);
|
||||
}
|
||||
|
||||
Outputs::Speaker::Speaker *get_speaker() override {
|
||||
return &speaker_;
|
||||
}
|
||||
@ -804,6 +816,28 @@ template <Analyser::Static::AppleII::Target::Model model> class ConcreteMachine:
|
||||
string_serialiser_.reset(new Utility::StringSerialiser(string, true));
|
||||
}
|
||||
|
||||
// MARK:: Configuration options.
|
||||
std::vector<std::unique_ptr<Configurable::Option>> get_options() override {
|
||||
return AppleII::get_options();
|
||||
}
|
||||
|
||||
void set_selections(const Configurable::SelectionSet &selections_by_option) override {
|
||||
Configurable::Display display;
|
||||
if(Configurable::get_display(selections_by_option, display)) {
|
||||
set_video_signal_configurable(display);
|
||||
}
|
||||
}
|
||||
|
||||
Configurable::SelectionSet get_accurate_selections() override {
|
||||
Configurable::SelectionSet selection_set;
|
||||
Configurable::append_display_selection(selection_set, Configurable::Display::CompositeColour);
|
||||
return selection_set;
|
||||
}
|
||||
|
||||
Configurable::SelectionSet get_user_friendly_selections() override {
|
||||
return get_accurate_selections();
|
||||
}
|
||||
|
||||
// MARK: MediaTarget
|
||||
bool insert_media(const Analyser::Static::Media &media) override {
|
||||
if(!media.disks.empty()) {
|
||||
|
@ -18,6 +18,9 @@
|
||||
|
||||
namespace AppleII {
|
||||
|
||||
/// @returns The options available for an Apple II.
|
||||
std::vector<std::unique_ptr<Configurable::Option>> get_options();
|
||||
|
||||
class Machine {
|
||||
public:
|
||||
virtual ~Machine();
|
||||
|
@ -42,6 +42,10 @@ void VideoBase::set_scan_target(Outputs::Display::ScanTarget *scan_target) {
|
||||
crt_.set_scan_target(scan_target);
|
||||
}
|
||||
|
||||
void VideoBase::set_display_type(Outputs::Display::DisplayType display_type) {
|
||||
crt_.set_display_type(display_type);
|
||||
}
|
||||
|
||||
/*
|
||||
Rote setters and getters.
|
||||
*/
|
||||
|
@ -39,6 +39,9 @@ class VideoBase {
|
||||
/// Sets the scan target.
|
||||
void set_scan_target(Outputs::Display::ScanTarget *scan_target);
|
||||
|
||||
/// Sets the type of output.
|
||||
void set_display_type(Outputs::Display::DisplayType);
|
||||
|
||||
/*
|
||||
Descriptions for the setters below are taken verbatim from
|
||||
the Apple IIe Technical Reference. Addresses are the conventional
|
||||
|
@ -132,6 +132,7 @@ std::map<std::string, std::vector<std::unique_ptr<Configurable::Option>>> Machin
|
||||
std::map<std::string, std::vector<std::unique_ptr<Configurable::Option>>> options;
|
||||
|
||||
options.emplace(std::make_pair(LongNameForTargetMachine(Analyser::Machine::AmstradCPC), AmstradCPC::get_options()));
|
||||
options.emplace(std::make_pair(LongNameForTargetMachine(Analyser::Machine::AppleII), AppleII::get_options()));
|
||||
options.emplace(std::make_pair(LongNameForTargetMachine(Analyser::Machine::Electron), Electron::get_options()));
|
||||
options.emplace(std::make_pair(LongNameForTargetMachine(Analyser::Machine::MSX), MSX::get_options()));
|
||||
options.emplace(std::make_pair(LongNameForTargetMachine(Analyser::Machine::Oric), Oric::get_options()));
|
||||
|
@ -1,8 +1,8 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<document type="com.apple.InterfaceBuilder3.Cocoa.XIB" version="3.0" toolsVersion="14113" targetRuntime="MacOSX.Cocoa" propertyAccessControl="none" useAutolayout="YES" customObjectInstantitationMethod="direct">
|
||||
<document type="com.apple.InterfaceBuilder3.Cocoa.XIB" version="3.0" toolsVersion="14460.31" targetRuntime="MacOSX.Cocoa" propertyAccessControl="none" useAutolayout="YES" customObjectInstantitationMethod="direct">
|
||||
<dependencies>
|
||||
<deployment identifier="macosx"/>
|
||||
<plugIn identifier="com.apple.InterfaceBuilder.CocoaPlugin" version="14113"/>
|
||||
<plugIn identifier="com.apple.InterfaceBuilder.CocoaPlugin" version="14460.31"/>
|
||||
<capability name="documents saved in the Xcode 8 format" minToolsVersion="8.0"/>
|
||||
</dependencies>
|
||||
<objects>
|
||||
@ -13,37 +13,43 @@
|
||||
</customObject>
|
||||
<customObject id="-1" userLabel="First Responder" customClass="FirstResponder"/>
|
||||
<customObject id="-3" userLabel="Application" customClass="NSObject"/>
|
||||
<window title="Options" allowsToolTipsWhenApplicationIsInactive="NO" autorecalculatesKeyViewLoop="NO" hidesOnDeactivate="YES" oneShot="NO" releasedWhenClosed="NO" showsToolbarButton="NO" visibleAtLaunch="NO" frameAutosaveName="" animationBehavior="default" id="ZW7-Bw-4RP" customClass="MachinePanel" customModule="Clock_Signal" customModuleProvider="target">
|
||||
<window title="Options" allowsToolTipsWhenApplicationIsInactive="NO" autorecalculatesKeyViewLoop="NO" hidesOnDeactivate="YES" releasedWhenClosed="NO" visibleAtLaunch="NO" frameAutosaveName="" animationBehavior="default" id="ZW7-Bw-4RP" customClass="MachinePanel" customModule="Clock_Signal" customModuleProvider="target">
|
||||
<windowStyleMask key="styleMask" titled="YES" closable="YES" utility="YES" nonactivatingPanel="YES" HUD="YES"/>
|
||||
<windowPositionMask key="initialPositionMask" leftStrut="YES" rightStrut="YES" topStrut="YES" bottomStrut="YES"/>
|
||||
<rect key="contentRect" x="80" y="150" width="200" height="54"/>
|
||||
<rect key="contentRect" x="80" y="150" width="200" height="61"/>
|
||||
<rect key="screenRect" x="0.0" y="0.0" width="1440" height="900"/>
|
||||
<view key="contentView" id="tpZ-0B-QQu">
|
||||
<rect key="frame" x="0.0" y="0.0" width="200" height="54"/>
|
||||
<rect key="frame" x="0.0" y="0.0" width="200" height="61"/>
|
||||
<autoresizingMask key="autoresizingMask"/>
|
||||
<subviews>
|
||||
<button translatesAutoresizingMaskIntoConstraints="NO" id="e1J-pw-zGw">
|
||||
<rect key="frame" x="18" y="18" width="164" height="18"/>
|
||||
<buttonCell key="cell" type="check" title="Accelerate DOS 3.3" bezelStyle="regularSquare" imagePosition="left" alignment="left" state="on" inset="2" id="tD6-UB-ESB">
|
||||
<behavior key="behavior" changeContents="YES" doesNotDimImage="YES" lightByContents="YES"/>
|
||||
<font key="font" metaFont="system"/>
|
||||
</buttonCell>
|
||||
<popUpButton verticalHuggingPriority="750" translatesAutoresizingMaskIntoConstraints="NO" id="ex3-VM-58z">
|
||||
<rect key="frame" x="18" y="17" width="165" height="25"/>
|
||||
<popUpButtonCell key="cell" type="push" title="Colour" bezelStyle="rounded" alignment="left" lineBreakMode="truncatingTail" state="on" borderStyle="borderAndBezel" tag="1" imageScaling="proportionallyDown" inset="2" selectedItem="gOu-dv-tre" id="u3N-Je-c2L">
|
||||
<behavior key="behavior" lightByBackground="YES" lightByGray="YES"/>
|
||||
<font key="font" metaFont="menu"/>
|
||||
<menu key="menu" id="BUS-Pl-jBm">
|
||||
<items>
|
||||
<menuItem title="Colour" state="on" tag="1" id="gOu-dv-tre"/>
|
||||
<menuItem title="Monochrome" tag="3" id="qhQ-ab-jRo"/>
|
||||
</items>
|
||||
</menu>
|
||||
</popUpButtonCell>
|
||||
<connections>
|
||||
<action selector="setFastLoading:" target="ZW7-Bw-4RP" id="JmG-Ks-jSh"/>
|
||||
<action selector="setDisplayType:" target="ZW7-Bw-4RP" id="f7A-2O-wR8"/>
|
||||
</connections>
|
||||
</button>
|
||||
</popUpButton>
|
||||
</subviews>
|
||||
<constraints>
|
||||
<constraint firstAttribute="bottom" secondItem="e1J-pw-zGw" secondAttribute="bottom" constant="20" id="5ce-DO-a4T"/>
|
||||
<constraint firstItem="e1J-pw-zGw" firstAttribute="leading" secondItem="tpZ-0B-QQu" secondAttribute="leading" constant="20" id="HSD-3d-Bl7"/>
|
||||
<constraint firstAttribute="trailing" secondItem="e1J-pw-zGw" secondAttribute="trailing" constant="20" id="Q9M-FH-92N"/>
|
||||
<constraint firstItem="e1J-pw-zGw" firstAttribute="top" secondItem="tpZ-0B-QQu" secondAttribute="top" constant="20" id="ul9-lf-Y3u"/>
|
||||
<constraint firstAttribute="bottom" secondItem="ex3-VM-58z" secondAttribute="bottom" constant="20" id="4ZS-q5-TJL"/>
|
||||
<constraint firstItem="ex3-VM-58z" firstAttribute="leading" secondItem="tpZ-0B-QQu" secondAttribute="leading" constant="20" id="8Pj-Ns-TrJ"/>
|
||||
<constraint firstAttribute="trailing" secondItem="ex3-VM-58z" secondAttribute="trailing" constant="20" id="QWA-lY-ugz"/>
|
||||
<constraint firstItem="ex3-VM-58z" firstAttribute="top" secondItem="tpZ-0B-QQu" secondAttribute="top" constant="20" id="szw-WO-3tS"/>
|
||||
</constraints>
|
||||
</view>
|
||||
<connections>
|
||||
<outlet property="fastLoadingButton" destination="e1J-pw-zGw" id="jj7-OZ-mOH"/>
|
||||
<outlet property="displayTypeButton" destination="ex3-VM-58z" id="lmZ-aN-lcj"/>
|
||||
</connections>
|
||||
<point key="canvasLocation" x="175" y="30"/>
|
||||
<point key="canvasLocation" x="-161" y="38.5"/>
|
||||
</window>
|
||||
</objects>
|
||||
</document>
|
||||
|
@ -32,6 +32,7 @@ class MachinePanel: NSPanel {
|
||||
switch tag {
|
||||
case 1: return .composite
|
||||
case 2: return .sVideo
|
||||
case 3: return .monochromeComposite
|
||||
default: break
|
||||
}
|
||||
return .RGB
|
||||
|
@ -24,7 +24,8 @@
|
||||
typedef NS_ENUM(NSInteger, CSMachineVideoSignal) {
|
||||
CSMachineVideoSignalComposite,
|
||||
CSMachineVideoSignalSVideo,
|
||||
CSMachineVideoSignalRGB
|
||||
CSMachineVideoSignalRGB,
|
||||
CSMachineVideoSignalMonochromeComposite
|
||||
};
|
||||
|
||||
typedef NS_ENUM(NSInteger, CSMachineKeyboardInputMode) {
|
||||
|
@ -461,9 +461,10 @@ struct ActivityObserver: public Activity::Observer {
|
||||
Configurable::SelectionSet selection_set;
|
||||
Configurable::Display display;
|
||||
switch(videoSignal) {
|
||||
case CSMachineVideoSignalRGB: display = Configurable::Display::RGB; break;
|
||||
case CSMachineVideoSignalSVideo: display = Configurable::Display::SVideo; break;
|
||||
case CSMachineVideoSignalComposite: display = Configurable::Display::CompositeColour; break;
|
||||
case CSMachineVideoSignalRGB: display = Configurable::Display::RGB; break;
|
||||
case CSMachineVideoSignalSVideo: display = Configurable::Display::SVideo; break;
|
||||
case CSMachineVideoSignalComposite: display = Configurable::Display::CompositeColour; break;
|
||||
case CSMachineVideoSignalMonochromeComposite: display = Configurable::Display::CompositeMonochrome; break;
|
||||
}
|
||||
append_display_selection(selection_set, display);
|
||||
configurable_device->set_selections(selection_set);
|
||||
@ -483,9 +484,10 @@ struct ActivityObserver: public Activity::Observer {
|
||||
// Get the standard option for this video signal.
|
||||
Configurable::StandardOptions option;
|
||||
switch(videoSignal) {
|
||||
case CSMachineVideoSignalRGB: option = Configurable::DisplayRGB; break;
|
||||
case CSMachineVideoSignalSVideo: option = Configurable::DisplaySVideo; break;
|
||||
case CSMachineVideoSignalComposite: option = Configurable::DisplayCompositeColour; break;
|
||||
case CSMachineVideoSignalRGB: option = Configurable::DisplayRGB; break;
|
||||
case CSMachineVideoSignalSVideo: option = Configurable::DisplaySVideo; break;
|
||||
case CSMachineVideoSignalComposite: option = Configurable::DisplayCompositeColour; break;
|
||||
case CSMachineVideoSignalMonochromeComposite: option = Configurable::DisplayCompositeMonochrome; break;
|
||||
}
|
||||
std::unique_ptr<Configurable::Option> display_option = std::move(standard_options(option).front());
|
||||
Configurable::ListOption *display_list_option = dynamic_cast<Configurable::ListOption *>(display_option.get());
|
||||
|
@ -189,7 +189,7 @@ static Analyser::Static::ZX8081::Target::MemoryModel ZX8081MemoryModelFromSize(K
|
||||
- (NSString *)optionsPanelNibName {
|
||||
switch(_targets.front()->machine) {
|
||||
case Analyser::Machine::AmstradCPC: return @"CompositeOptions";
|
||||
// case Analyser::Machine::AppleII: return @"AppleIIOptions";
|
||||
case Analyser::Machine::AppleII: return @"AppleIIOptions";
|
||||
case Analyser::Machine::Atari2600: return @"Atari2600Options";
|
||||
case Analyser::Machine::Electron: return @"QuickLoadCompositeOptions";
|
||||
case Analyser::Machine::MasterSystem: return @"CompositeOptions";
|
||||
|
@ -53,7 +53,7 @@ Shader::Shader(const std::string &vertex_shader, const std::string &fragment_sha
|
||||
GLuint index = 0;
|
||||
for(const auto &name: binding_names) {
|
||||
bindings.emplace_back(name, index);
|
||||
index += 4;
|
||||
++index;
|
||||
}
|
||||
init(vertex_shader, fragment_shader, bindings);
|
||||
}
|
||||
@ -68,6 +68,21 @@ void Shader::init(const std::string &vertex_shader, const std::string &fragment_
|
||||
|
||||
for(const auto &binding : attribute_bindings) {
|
||||
glBindAttribLocation(shader_program_, binding.index, binding.name.c_str());
|
||||
#ifndef NDEBUG
|
||||
const auto error = glGetError();
|
||||
switch(error) {
|
||||
case 0: break;
|
||||
case GL_INVALID_VALUE:
|
||||
LOG("GL_INVALID_VALUE when attempting to bind " << binding.name << " to index " << binding.index << " (i.e. index is greater than or equal to GL_MAX_VERTEX_ATTRIBS)");
|
||||
break;
|
||||
case GL_INVALID_OPERATION:
|
||||
LOG("GL_INVALID_OPERATION when attempting to bind " << binding.name << " to index " << binding.index << " (i.e. name begins with gl_)");
|
||||
break;
|
||||
default:
|
||||
LOG("Error " << error << " when attempting to bind " << binding.name << " to index " << binding.index);
|
||||
break;
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
glLinkProgram(shader_program_);
|
||||
|
@ -50,7 +50,7 @@ public:
|
||||
Attempts to compile a shader, throwing @c VertexShaderCompilationError, @c FragmentShaderCompilationError or @c ProgramLinkageError upon failure.
|
||||
@param vertex_shader The vertex shader source code.
|
||||
@param fragment_shader The fragment shader source code.
|
||||
@param binding_names A list of attributes to generate bindings for; these will be given indices 0, 4, 8 ... 4(n-1).
|
||||
@param binding_names A list of attributes to generate bindings for; these will be given indices 0, 1, 2 ... n-1.
|
||||
*/
|
||||
Shader(const std::string &vertex_shader, const std::string &fragment_shader, const std::vector<std::string> &binding_names);
|
||||
~Shader();
|
||||
|
@ -23,8 +23,15 @@ constexpr GLenum SourceDataTextureUnit = GL_TEXTURE0;
|
||||
/// The texture unit which contains raw line-by-line composite, S-Video or RGB data.
|
||||
constexpr GLenum UnprocessedLineBufferTextureUnit = GL_TEXTURE1;
|
||||
|
||||
/// The texture unit that contains a pre-lowpass-filtered but fixed-resolution version of the chroma signal;
|
||||
/// this is used when processing composite video only, and for chroma information only. Luminance is calculated
|
||||
/// at the fidelity permitted by the output target, but my efforts to separate, demodulate and filter
|
||||
/// chrominance during output without either massively sampling or else incurring significant high-frequency
|
||||
/// noise that sampling reduces into a Moire, have proven to be unsuccessful for the time being.
|
||||
constexpr GLenum QAMChromaTextureUnit = GL_TEXTURE2;
|
||||
|
||||
/// The texture unit that contains the current display.
|
||||
constexpr GLenum AccumulationTextureUnit = GL_TEXTURE2;
|
||||
constexpr GLenum AccumulationTextureUnit = GL_TEXTURE3;
|
||||
|
||||
#define TextureAddress(x, y) (((y) << 11) | (x))
|
||||
#define TextureAddressGetY(v) uint16_t((v) >> 11)
|
||||
@ -299,19 +306,34 @@ void ScanTarget::setup_pipeline() {
|
||||
write_pointers_.write_area = 0;
|
||||
}
|
||||
|
||||
// Pick a processing width; this will be the minimum necessary not to
|
||||
// lose any detail when combining the input.
|
||||
processing_width_ = modals_.cycles_per_line / modals_.clocks_per_pixel_greatest_common_divisor;
|
||||
// Prepare to bind line shaders.
|
||||
glBindVertexArray(line_vertex_array_);
|
||||
glBindBuffer(GL_ARRAY_BUFFER, line_buffer_name_);
|
||||
|
||||
// Destroy or create a QAM buffer and shader, if appropriate.
|
||||
const bool needs_qam_buffer = (modals_.display_type == DisplayType::CompositeColour || modals_.display_type == DisplayType::SVideo);
|
||||
if(needs_qam_buffer) {
|
||||
if(!qam_chroma_texture_) {
|
||||
qam_chroma_texture_.reset(new TextureTarget(LineBufferWidth, LineBufferHeight, QAMChromaTextureUnit, GL_NEAREST, false));
|
||||
}
|
||||
|
||||
qam_separation_shader_ = qam_separation_shader();
|
||||
enable_vertex_attributes(ShaderType::QAMSeparation, *qam_separation_shader_);
|
||||
set_uniforms(ShaderType::QAMSeparation, *qam_separation_shader_);
|
||||
qam_separation_shader_->set_uniform("textureName", GLint(UnprocessedLineBufferTextureUnit - GL_TEXTURE0));
|
||||
} else {
|
||||
qam_chroma_texture_.reset();
|
||||
qam_separation_shader_.reset();
|
||||
}
|
||||
|
||||
// Establish an output shader.
|
||||
output_shader_ = conversion_shader();
|
||||
glBindVertexArray(line_vertex_array_);
|
||||
glBindBuffer(GL_ARRAY_BUFFER, line_buffer_name_);
|
||||
enable_vertex_attributes(ShaderType::Conversion, *output_shader_);
|
||||
set_uniforms(ShaderType::Conversion, *output_shader_);
|
||||
output_shader_->set_uniform("origin", modals_.visible_area.origin.x, modals_.visible_area.origin.y);
|
||||
output_shader_->set_uniform("size", modals_.visible_area.size.width, modals_.visible_area.size.height);
|
||||
output_shader_->set_uniform("textureName", GLint(UnprocessedLineBufferTextureUnit - GL_TEXTURE0));
|
||||
output_shader_->set_uniform("qamTextureName", GLint(QAMChromaTextureUnit - GL_TEXTURE0));
|
||||
|
||||
// Establish an input shader.
|
||||
input_shader_ = composition_shader();
|
||||
@ -484,35 +506,37 @@ void ScanTarget::draw(bool synchronous, int output_width, int output_height) {
|
||||
stencil_is_valid_ = false;
|
||||
}
|
||||
|
||||
// Figure out how many new spans are ostensible ready; use two less than that.
|
||||
uint16_t new_spans = (submit_pointers.line + LineBufferHeight - read_pointers.line) % LineBufferHeight;
|
||||
if(new_spans) {
|
||||
// Bind the accumulation framebuffer.
|
||||
accumulation_texture_->bind_framebuffer();
|
||||
|
||||
// Enable blending and stenciling, and ensure spans increment the stencil buffer.
|
||||
glEnable(GL_BLEND);
|
||||
glEnable(GL_STENCIL_TEST);
|
||||
glStencilFunc(GL_EQUAL, 0, GLuint(~0));
|
||||
glStencilOp(GL_KEEP, GL_KEEP, GL_INCR);
|
||||
|
||||
// Figure out how many new lines are ready.
|
||||
uint16_t new_lines = (submit_pointers.line + LineBufferHeight - read_pointers.line) % LineBufferHeight;
|
||||
if(new_lines) {
|
||||
// Prepare to output lines.
|
||||
glBindVertexArray(line_vertex_array_);
|
||||
output_shader_->bind();
|
||||
|
||||
// Bind the accumulation framebuffer, unless there's going to be QAM work.
|
||||
if(!qam_separation_shader_) {
|
||||
accumulation_texture_->bind_framebuffer();
|
||||
output_shader_->bind();
|
||||
|
||||
// Enable blending and stenciling, and ensure spans increment the stencil buffer.
|
||||
glEnable(GL_BLEND);
|
||||
glEnable(GL_STENCIL_TEST);
|
||||
}
|
||||
glStencilFunc(GL_EQUAL, 0, GLuint(~0));
|
||||
glStencilOp(GL_KEEP, GL_KEEP, GL_INCR);
|
||||
|
||||
// Prepare to upload data that will consitute lines.
|
||||
glBindBuffer(GL_ARRAY_BUFFER, line_buffer_name_);
|
||||
|
||||
// Divide spans by which frame they're in.
|
||||
uint16_t start_line = read_pointers.line;
|
||||
while(new_spans) {
|
||||
while(new_lines) {
|
||||
uint16_t end_line = start_line+1;
|
||||
|
||||
// Find the limit of spans to draw in this cycle.
|
||||
size_t spans = 1;
|
||||
size_t lines = 1;
|
||||
while(end_line != submit_pointers.line && !line_metadata_buffer_[end_line].is_first_in_frame) {
|
||||
end_line = (end_line + 1) % LineBufferHeight;
|
||||
++spans;
|
||||
++lines;
|
||||
}
|
||||
|
||||
// If this is start-of-frame, clear any untouched pixels and flush the stencil buffer
|
||||
@ -525,11 +549,13 @@ void ScanTarget::draw(bool synchronous, int output_width, int output_height) {
|
||||
|
||||
// Rebind the program for span output.
|
||||
glBindVertexArray(line_vertex_array_);
|
||||
output_shader_->bind();
|
||||
if(!qam_separation_shader_) {
|
||||
output_shader_->bind();
|
||||
}
|
||||
}
|
||||
|
||||
// Upload and draw.
|
||||
const auto buffer_size = spans * sizeof(Line);
|
||||
// Upload.
|
||||
const auto buffer_size = lines * sizeof(Line);
|
||||
if(!end_line || end_line > start_line) {
|
||||
glBufferSubData(GL_ARRAY_BUFFER, 0, GLsizeiptr(buffer_size), &line_buffer_[start_line]);
|
||||
} else {
|
||||
@ -547,10 +573,28 @@ void ScanTarget::draw(bool synchronous, int output_width, int output_height) {
|
||||
glUnmapBuffer(GL_ARRAY_BUFFER);
|
||||
}
|
||||
|
||||
glDrawArraysInstanced(GL_TRIANGLE_STRIP, 0, 4, GLsizei(spans));
|
||||
// Produce colour information, if required.
|
||||
if(qam_separation_shader_) {
|
||||
qam_separation_shader_->bind();
|
||||
qam_chroma_texture_->bind_framebuffer();
|
||||
glClear(GL_COLOR_BUFFER_BIT); // TODO: this is here as a hint that the old framebuffer doesn't need reloading;
|
||||
// test whether that's a valid optimisation on desktop OpenGL.
|
||||
|
||||
glDisable(GL_BLEND);
|
||||
glDisable(GL_STENCIL_TEST);
|
||||
glDrawArraysInstanced(GL_TRIANGLE_STRIP, 0, 4, GLsizei(lines));
|
||||
|
||||
accumulation_texture_->bind_framebuffer();
|
||||
output_shader_->bind();
|
||||
glEnable(GL_BLEND);
|
||||
glEnable(GL_STENCIL_TEST);
|
||||
}
|
||||
|
||||
// Render to the output.
|
||||
glDrawArraysInstanced(GL_TRIANGLE_STRIP, 0, 4, GLsizei(lines));
|
||||
|
||||
start_line = end_line;
|
||||
new_spans -= spans;
|
||||
new_lines -= lines;
|
||||
}
|
||||
|
||||
// Disable blending and the stencil test again.
|
||||
|
@ -124,6 +124,10 @@ class ScanTarget: public Outputs::Display::ScanTarget {
|
||||
// application of any necessary conversions — e.g. composite processing.
|
||||
TextureTarget unprocessed_line_texture_;
|
||||
|
||||
// Contains pre-lowpass-filtered chrominance information that is
|
||||
// part-QAM-demoduled, if dealing with a QAM data source.
|
||||
std::unique_ptr<TextureTarget> qam_chroma_texture_;
|
||||
|
||||
// Scans are accumulated to the accumulation texture; the full-display
|
||||
// rectangle is used to ensure untouched pixels properly decay.
|
||||
std::unique_ptr<TextureTarget> accumulation_texture_;
|
||||
@ -165,7 +169,8 @@ class ScanTarget: public Outputs::Display::ScanTarget {
|
||||
|
||||
enum class ShaderType {
|
||||
Composition,
|
||||
Conversion
|
||||
Conversion,
|
||||
QAMSeparation
|
||||
};
|
||||
|
||||
/*!
|
||||
@ -173,14 +178,16 @@ class ScanTarget: public Outputs::Display::ScanTarget {
|
||||
globals for shaders of @c type to @c target.
|
||||
*/
|
||||
static void enable_vertex_attributes(ShaderType type, Shader &target);
|
||||
void set_uniforms(ShaderType type, Shader &target);
|
||||
void set_uniforms(ShaderType type, Shader &target) const;
|
||||
std::vector<std::string> bindings(ShaderType type) const;
|
||||
|
||||
GLsync fence_ = nullptr;
|
||||
std::atomic_flag is_drawing_;
|
||||
|
||||
int processing_width_ = 0;
|
||||
std::unique_ptr<Shader> input_shader_;
|
||||
std::unique_ptr<Shader> output_shader_;
|
||||
std::unique_ptr<Shader> qam_separation_shader_;
|
||||
|
||||
|
||||
/*!
|
||||
Produces a shader that composes fragment of the input stream to a single buffer,
|
||||
@ -193,6 +200,14 @@ class ScanTarget: public Outputs::Display::ScanTarget {
|
||||
output RGB, decoding composite or S-Video as necessary.
|
||||
*/
|
||||
std::unique_ptr<Shader> conversion_shader() const;
|
||||
/*!
|
||||
Produces a shader that writes separated but not-yet filtered QAM components
|
||||
from the unprocessed line texture to the QAM chroma texture, at a fixed
|
||||
size of four samples per colour clock, point sampled.
|
||||
*/
|
||||
std::unique_ptr<Shader> qam_separation_shader() const;
|
||||
|
||||
std::string sampling_function() const;
|
||||
};
|
||||
|
||||
}
|
||||
|
@ -12,17 +12,46 @@
|
||||
|
||||
using namespace Outputs::Display::OpenGL;
|
||||
|
||||
void Outputs::Display::OpenGL::ScanTarget::set_uniforms(ShaderType type, Shader &target) {
|
||||
// MARK: - State setup for compiled shaders.
|
||||
|
||||
void Outputs::Display::OpenGL::ScanTarget::set_uniforms(ShaderType type, Shader &target) const {
|
||||
// Slightly over-amping rowHeight here is a cheap way to make sure that lines
|
||||
// converge even allowing for the fact that they may not be spaced by exactly
|
||||
// the expected distance. Cf. the stencil-powered logic for making sure all
|
||||
// pixels are painted only exactly once per field.
|
||||
switch(type) {
|
||||
default: break;
|
||||
case ShaderType::Conversion:
|
||||
case ShaderType::Composition: break;
|
||||
default:
|
||||
target.set_uniform("rowHeight", GLfloat(1.05f / modals_.expected_vertical_lines));
|
||||
target.set_uniform("scale", GLfloat(modals_.output_scale.x), GLfloat(modals_.output_scale.y));
|
||||
target.set_uniform("phaseOffset", GLfloat(modals_.input_data_tweaks.phase_linked_luminance_offset));
|
||||
|
||||
const float clocks_per_angle = float(modals_.cycles_per_line) * float(modals_.colour_cycle_denominator) / float(modals_.colour_cycle_numerator);
|
||||
GLfloat texture_offsets[4];
|
||||
GLfloat angles[4];
|
||||
for(int c = 0; c < 4; ++c) {
|
||||
GLfloat angle = (GLfloat(c) - 1.5f) / 4.0f;
|
||||
texture_offsets[c] = angle * clocks_per_angle;
|
||||
angles[c] = GLfloat(angle * 2.0f * M_PI);
|
||||
}
|
||||
target.set_uniform("textureCoordinateOffsets", 1, 4, texture_offsets);
|
||||
target.set_uniform("compositeAngleOffsets", 4, 1, angles);
|
||||
|
||||
switch(modals_.composite_colour_space) {
|
||||
case ColourSpace::YIQ: {
|
||||
const GLfloat rgbToYIQ[] = {0.299f, 0.596f, 0.211f, 0.587f, -0.274f, -0.523f, 0.114f, -0.322f, 0.312f};
|
||||
const GLfloat yiqToRGB[] = {1.0f, 1.0f, 1.0f, 0.956f, -0.272f, -1.106f, 0.621f, -0.647f, 1.703f};
|
||||
target.set_uniform_matrix("lumaChromaToRGB", 3, false, yiqToRGB);
|
||||
target.set_uniform_matrix("rgbToLumaChroma", 3, false, rgbToYIQ);
|
||||
} break;
|
||||
|
||||
case ColourSpace::YUV: {
|
||||
const GLfloat rgbToYUV[] = {0.299f, -0.14713f, 0.615f, 0.587f, -0.28886f, -0.51499f, 0.114f, 0.436f, -0.10001f};
|
||||
const GLfloat yuvToRGB[] = {1.0f, 1.0f, 1.0f, 0.0f, -0.39465f, 2.03211f, 1.13983f, -0.58060f, 0.0f};
|
||||
target.set_uniform_matrix("lumaChromaToRGB", 3, false, yuvToRGB);
|
||||
target.set_uniform_matrix("rgbToLumaChroma", 3, false, rgbToYUV);
|
||||
} break;
|
||||
}
|
||||
break;
|
||||
}
|
||||
}
|
||||
@ -69,16 +98,18 @@ void ScanTarget::enable_vertex_attributes(ShaderType type, Shader &target) {
|
||||
1);
|
||||
break;
|
||||
|
||||
case ShaderType::Conversion:
|
||||
default:
|
||||
for(int c = 0; c < 2; ++c) {
|
||||
const std::string prefix = c ? "end" : "start";
|
||||
|
||||
target.enable_vertex_attribute_with_pointer(
|
||||
prefix + "Point",
|
||||
2, GL_UNSIGNED_SHORT, GL_FALSE,
|
||||
sizeof(Line),
|
||||
reinterpret_cast<void *>(rt_offset_of(end_points[c].x, test_line)),
|
||||
1);
|
||||
if(type == ShaderType::Conversion) {
|
||||
target.enable_vertex_attribute_with_pointer(
|
||||
prefix + "Point",
|
||||
2, GL_UNSIGNED_SHORT, GL_FALSE,
|
||||
sizeof(Line),
|
||||
reinterpret_cast<void *>(rt_offset_of(end_points[c].x, test_line)),
|
||||
1);
|
||||
}
|
||||
|
||||
target.enable_vertex_attribute_with_pointer(
|
||||
prefix + "Clock",
|
||||
@ -113,6 +144,331 @@ void ScanTarget::enable_vertex_attributes(ShaderType type, Shader &target) {
|
||||
#undef rt_offset_of
|
||||
}
|
||||
|
||||
std::vector<std::string> ScanTarget::bindings(ShaderType type) const {
|
||||
switch(type) {
|
||||
case ShaderType::Composition: return {
|
||||
"startDataX",
|
||||
"startClock",
|
||||
"endDataX",
|
||||
"endClock",
|
||||
"dataY",
|
||||
"lineY"
|
||||
};
|
||||
|
||||
default: return {
|
||||
"startPoint",
|
||||
"endPoint",
|
||||
"startClock",
|
||||
"endClock",
|
||||
"lineY",
|
||||
"lineCompositeAmplitude",
|
||||
"startCompositeAngle",
|
||||
"endCompositeAngle"
|
||||
};
|
||||
}
|
||||
}
|
||||
|
||||
// MARK: - Shader code.
|
||||
|
||||
std::string ScanTarget::sampling_function() const {
|
||||
std::string fragment_shader;
|
||||
|
||||
if(modals_.display_type == DisplayType::SVideo) {
|
||||
fragment_shader +=
|
||||
"vec2 svideo_sample(vec2 coordinate, float angle) {";
|
||||
} else {
|
||||
fragment_shader +=
|
||||
"float composite_sample(vec2 coordinate, float angle) {";
|
||||
}
|
||||
|
||||
const bool is_svideo = modals_.display_type == DisplayType::SVideo;
|
||||
switch(modals_.input_data_type) {
|
||||
case InputDataType::Luminance1:
|
||||
case InputDataType::Luminance8:
|
||||
// Easy, just copy across.
|
||||
fragment_shader +=
|
||||
is_svideo ?
|
||||
"return vec2(textureLod(textureName, coordinate, 0).r, 0.0);" :
|
||||
"return textureLod(textureName, coordinate, 0).r;";
|
||||
break;
|
||||
|
||||
case InputDataType::PhaseLinkedLuminance8:
|
||||
fragment_shader +=
|
||||
"uint iPhase = uint((angle * 2.0 / 3.141592654) ) & 3u;";
|
||||
|
||||
fragment_shader +=
|
||||
is_svideo ?
|
||||
"return vec2(textureLod(textureName, coordinate, 0)[iPhase], 0.0);" :
|
||||
"return textureLod(textureName, coordinate, 0)[iPhase];";
|
||||
break;
|
||||
|
||||
case InputDataType::Luminance8Phase8:
|
||||
fragment_shader +=
|
||||
"vec2 yc = textureLod(textureName, coordinate, 0).rg;"
|
||||
|
||||
"float phaseOffset = 3.141592654 * 2.0 * 2.0 * yc.y;"
|
||||
"float rawChroma = step(yc.y, 0.75) * cos(angle + phaseOffset);";
|
||||
|
||||
fragment_shader +=
|
||||
is_svideo ?
|
||||
"return vec2(yc.x, rawChroma);" :
|
||||
"return mix(yc.x, rawChroma, compositeAmplitude);";
|
||||
break;
|
||||
|
||||
case InputDataType::Red1Green1Blue1:
|
||||
case InputDataType::Red2Green2Blue2:
|
||||
case InputDataType::Red4Green4Blue4:
|
||||
case InputDataType::Red8Green8Blue8:
|
||||
fragment_shader +=
|
||||
"vec3 colour = rgbToLumaChroma * textureLod(textureName, coordinate, 0).rgb;"
|
||||
"vec2 quadrature = vec2(cos(angle), sin(angle));";
|
||||
|
||||
fragment_shader +=
|
||||
is_svideo ?
|
||||
"return vec2(colour.r, dot(quadrature, colour.gb));" :
|
||||
"return mix(colour.r, dot(quadrature, colour.gb), compositeAmplitude);";
|
||||
break;
|
||||
}
|
||||
|
||||
fragment_shader += "}";
|
||||
|
||||
return fragment_shader;
|
||||
}
|
||||
|
||||
std::unique_ptr<Shader> ScanTarget::conversion_shader() const {
|
||||
// Compose a vertex shader. If the display type is RGB, generate just the proper
|
||||
// geometry position, plus a solitary textureCoordinate.
|
||||
//
|
||||
// If the display type is anything other than RGB, also produce composite
|
||||
// angle and 1/composite amplitude as outputs.
|
||||
//
|
||||
// If the display type is composite colour, generate four textureCoordinates,
|
||||
// spanning a range of -135, -45, +45, +135 degrees.
|
||||
//
|
||||
// If the display type is S-Video, generate three textureCoordinates, at
|
||||
// -45, 0, +45.
|
||||
std::string vertex_shader =
|
||||
"#version 150\n"
|
||||
|
||||
"uniform vec2 scale;"
|
||||
"uniform float rowHeight;"
|
||||
|
||||
"in vec2 startPoint;"
|
||||
"in vec2 endPoint;"
|
||||
|
||||
"in float startClock;"
|
||||
"in float startCompositeAngle;"
|
||||
"in float endClock;"
|
||||
"in float endCompositeAngle;"
|
||||
|
||||
"in float lineY;"
|
||||
"in float lineCompositeAmplitude;"
|
||||
|
||||
"uniform sampler2D textureName;"
|
||||
"uniform sampler2D qamTextureName;"
|
||||
"uniform vec2 origin;"
|
||||
"uniform vec2 size;";
|
||||
|
||||
std::string fragment_shader =
|
||||
"#version 150\n"
|
||||
|
||||
"uniform sampler2D textureName;"
|
||||
"uniform sampler2D qamTextureName;"
|
||||
|
||||
"out vec4 fragColour;";
|
||||
|
||||
if(modals_.display_type != DisplayType::RGB) {
|
||||
vertex_shader +=
|
||||
"out float compositeAngle;"
|
||||
"out float compositeAmplitude;"
|
||||
"out float oneOverCompositeAmplitude;"
|
||||
|
||||
"uniform float textureCoordinateOffsets[4];"
|
||||
"uniform float angleOffsets[4];";
|
||||
fragment_shader +=
|
||||
"in float compositeAngle;"
|
||||
"in float compositeAmplitude;"
|
||||
"in float oneOverCompositeAmplitude;"
|
||||
|
||||
"uniform vec4 compositeAngleOffsets;";
|
||||
}
|
||||
|
||||
switch(modals_.display_type){
|
||||
case DisplayType::RGB:
|
||||
case DisplayType::CompositeMonochrome:
|
||||
vertex_shader += "out vec2 textureCoordinate;";
|
||||
fragment_shader += "in vec2 textureCoordinate;";
|
||||
break;
|
||||
|
||||
case DisplayType::SVideo:
|
||||
vertex_shader +=
|
||||
"out vec2 textureCoordinate;"
|
||||
"out vec2 qamTextureCoordinates[4];";
|
||||
fragment_shader +=
|
||||
"in vec2 textureCoordinate;"
|
||||
"in vec2 qamTextureCoordinates[4];";
|
||||
break;
|
||||
|
||||
case DisplayType::CompositeColour:
|
||||
vertex_shader +=
|
||||
"out vec2 textureCoordinates[4];"
|
||||
"out vec2 qamTextureCoordinates[4];";
|
||||
fragment_shader +=
|
||||
"in vec2 textureCoordinates[4];"
|
||||
"in vec2 qamTextureCoordinates[4];";
|
||||
break;
|
||||
}
|
||||
|
||||
// Add the code to generate a proper output position; this applies to all display types.
|
||||
vertex_shader +=
|
||||
"void main(void) {"
|
||||
"float lateral = float(gl_VertexID & 1);"
|
||||
"float longitudinal = float((gl_VertexID & 2) >> 1);"
|
||||
"vec2 centrePoint = mix(startPoint, vec2(endPoint.x, startPoint.y), lateral) / scale;"
|
||||
"vec2 height = normalize(vec2(endPoint.x, startPoint.y) - startPoint).yx * (longitudinal - 0.5) * rowHeight;"
|
||||
"vec2 eyePosition = vec2(-1.0, 1.0) + vec2(2.0, -2.0) * (((centrePoint + height) - origin) / size);"
|
||||
"gl_Position = vec4(eyePosition, 0.0, 1.0);";
|
||||
|
||||
// For everything other than RGB, calculate the two composite outputs.
|
||||
if(modals_.display_type != DisplayType::RGB) {
|
||||
vertex_shader +=
|
||||
"compositeAngle = (mix(startCompositeAngle, endCompositeAngle, lateral) / 32.0) * 3.141592654;"
|
||||
"compositeAmplitude = lineCompositeAmplitude / 255.0;"
|
||||
"oneOverCompositeAmplitude = mix(0.0, 255.0 / lineCompositeAmplitude, step(0.01, lineCompositeAmplitude));";
|
||||
}
|
||||
|
||||
// For RGB and monochrome composite, generate the single texture coordinate; otherwise generate either three
|
||||
// or four depending on the type of decoding to apply.
|
||||
switch(modals_.display_type) {
|
||||
case DisplayType::RGB:
|
||||
case DisplayType::CompositeMonochrome:
|
||||
case DisplayType::SVideo:
|
||||
vertex_shader +=
|
||||
"textureCoordinate = vec2(mix(startClock, endClock, lateral), lineY + 0.5) / textureSize(textureName, 0);";
|
||||
break;
|
||||
|
||||
case DisplayType::CompositeColour:
|
||||
vertex_shader +=
|
||||
"float centreClock = mix(startClock, endClock, lateral);"
|
||||
"textureCoordinates[0] = vec2(centreClock + textureCoordinateOffsets[0], lineY + 0.5) / textureSize(textureName, 0);"
|
||||
"textureCoordinates[1] = vec2(centreClock + textureCoordinateOffsets[1], lineY + 0.5) / textureSize(textureName, 0);"
|
||||
"textureCoordinates[2] = vec2(centreClock + textureCoordinateOffsets[2], lineY + 0.5) / textureSize(textureName, 0);"
|
||||
"textureCoordinates[3] = vec2(centreClock + textureCoordinateOffsets[3], lineY + 0.5) / textureSize(textureName, 0);";
|
||||
break;
|
||||
}
|
||||
|
||||
if((modals_.display_type == DisplayType::SVideo) || (modals_.display_type == DisplayType::CompositeColour)) {
|
||||
vertex_shader +=
|
||||
"float centreCompositeAngle = abs(mix(startCompositeAngle, endCompositeAngle, lateral)) * 4.0 / 64.0;"
|
||||
"qamTextureCoordinates[0] = vec2(centreCompositeAngle - 1.5, lineY + 0.5) / textureSize(textureName, 0);"
|
||||
"qamTextureCoordinates[1] = vec2(centreCompositeAngle - 0.5, lineY + 0.5) / textureSize(textureName, 0);"
|
||||
"qamTextureCoordinates[2] = vec2(centreCompositeAngle + 0.5, lineY + 0.5) / textureSize(textureName, 0);"
|
||||
"qamTextureCoordinates[3] = vec2(centreCompositeAngle + 1.5, lineY + 0.5) / textureSize(textureName, 0);";
|
||||
}
|
||||
|
||||
vertex_shader += "}";
|
||||
|
||||
// Compose a fragment shader.
|
||||
|
||||
if(modals_.display_type != DisplayType::RGB) {
|
||||
fragment_shader +=
|
||||
"uniform mat3 lumaChromaToRGB;"
|
||||
"uniform mat3 rgbToLumaChroma;";
|
||||
|
||||
fragment_shader += sampling_function();
|
||||
}
|
||||
|
||||
fragment_shader +=
|
||||
"void main(void) {"
|
||||
"vec3 fragColour3;";
|
||||
|
||||
switch(modals_.display_type) {
|
||||
case DisplayType::RGB:
|
||||
fragment_shader += "fragColour3 = textureLod(textureName, textureCoordinate, 0).rgb;";
|
||||
break;
|
||||
|
||||
case DisplayType::SVideo:
|
||||
fragment_shader +=
|
||||
// Sample the S-Video stream once, to obtain luminance.
|
||||
"vec2 sample = svideo_sample(textureCoordinate, compositeAngle);"
|
||||
|
||||
// Split and average chrominance.
|
||||
"vec2 chrominances[4] = vec2[4]("
|
||||
"textureLod(qamTextureName, qamTextureCoordinates[0], 0).gb,"
|
||||
"textureLod(qamTextureName, qamTextureCoordinates[1], 0).gb,"
|
||||
"textureLod(qamTextureName, qamTextureCoordinates[2], 0).gb,"
|
||||
"textureLod(qamTextureName, qamTextureCoordinates[3], 0).gb"
|
||||
");"
|
||||
"vec2 channels = (chrominances[0] + chrominances[1] + chrominances[2] + chrominances[3])*0.5 - vec2(1.0);"
|
||||
|
||||
// Apply a colour space conversion to get RGB.
|
||||
"fragColour3 = lumaChromaToRGB * vec3(sample.r, channels);";
|
||||
break;
|
||||
|
||||
case DisplayType::CompositeColour:
|
||||
fragment_shader +=
|
||||
"vec4 angles = compositeAngle + compositeAngleOffsets;"
|
||||
|
||||
// Sample four times over, at proper angle offsets.
|
||||
"vec4 samples = vec4("
|
||||
"composite_sample(textureCoordinates[0], angles.x),"
|
||||
"composite_sample(textureCoordinates[1], angles.y),"
|
||||
"composite_sample(textureCoordinates[2], angles.z),"
|
||||
"composite_sample(textureCoordinates[3], angles.w)"
|
||||
");"
|
||||
|
||||
// Compute a luminance for use if there's no colour information, now, before
|
||||
// modifying samples.
|
||||
"float mono_luminance = dot(samples, vec4(0.15, 0.35, 0.35, 0.15));" // TODO: figure out proper coefficients.
|
||||
|
||||
// Take the average to calculate luminance, then subtract that from all four samples to
|
||||
// give chrominance.
|
||||
"float luminance = dot(samples, vec4(0.25));"
|
||||
|
||||
// Split and average chrominance.
|
||||
"vec2 chrominances[4] = vec2[4]("
|
||||
"textureLod(qamTextureName, qamTextureCoordinates[0], 0).gb,"
|
||||
"textureLod(qamTextureName, qamTextureCoordinates[1], 0).gb,"
|
||||
"textureLod(qamTextureName, qamTextureCoordinates[2], 0).gb,"
|
||||
"textureLod(qamTextureName, qamTextureCoordinates[3], 0).gb"
|
||||
");"
|
||||
"vec2 channels = (chrominances[0] + chrominances[1] + chrominances[2] + chrominances[3])*0.5 - vec2(1.0);"
|
||||
|
||||
// Apply a colour space conversion to get RGB.
|
||||
"fragColour3 = mix("
|
||||
"lumaChromaToRGB * vec3(luminance / (1.0 - compositeAmplitude), channels),"
|
||||
"vec3(mono_luminance),"
|
||||
"step(oneOverCompositeAmplitude, 0.01)"
|
||||
");";
|
||||
break;
|
||||
|
||||
case DisplayType::CompositeMonochrome:
|
||||
fragment_shader += "fragColour3 = vec3(composite_sample(textureCoordinate, compositeAngle));";
|
||||
break;
|
||||
}
|
||||
|
||||
// Apply a brightness adjustment if requested.
|
||||
if(fabs(modals_.brightness - 1.0f) > 0.05f) {
|
||||
fragment_shader += "fragColour3 = fragColour3 * " + std::to_string(modals_.brightness) + ";";
|
||||
}
|
||||
|
||||
// Apply a gamma correction if required.
|
||||
if(fabs(output_gamma_ - modals_.intended_gamma) > 0.05f) {
|
||||
const float gamma_ratio = output_gamma_ / modals_.intended_gamma;
|
||||
fragment_shader += "fragColour3 = pow(fragColour3, vec3(" + std::to_string(gamma_ratio) + "));";
|
||||
}
|
||||
|
||||
fragment_shader +=
|
||||
"fragColour = vec4(fragColour3, 0.64);"
|
||||
"}";
|
||||
|
||||
return std::unique_ptr<Shader>(new Shader(
|
||||
vertex_shader,
|
||||
fragment_shader,
|
||||
bindings(ShaderType::Conversion)
|
||||
));
|
||||
}
|
||||
|
||||
std::unique_ptr<Shader> ScanTarget::composition_shader() const {
|
||||
const std::string vertex_shader =
|
||||
"#version 150\n"
|
||||
@ -183,38 +539,18 @@ std::unique_ptr<Shader> ScanTarget::composition_shader() const {
|
||||
return std::unique_ptr<Shader>(new Shader(
|
||||
vertex_shader,
|
||||
fragment_shader + "}",
|
||||
{
|
||||
"startDataX",
|
||||
"startClock",
|
||||
"endDataX",
|
||||
"endClock",
|
||||
"dataY",
|
||||
"lineY",
|
||||
}
|
||||
bindings(ShaderType::Composition)
|
||||
));
|
||||
}
|
||||
|
||||
std::unique_ptr<Shader> ScanTarget::conversion_shader() const {
|
||||
// Compose a vertex shader. If the display type is RGB, generate just the proper
|
||||
// geometry position, plus a solitary textureCoordinate.
|
||||
//
|
||||
// If the display type is anything other than RGB, also produce composite
|
||||
// angle and 1/composite amplitude as outputs.
|
||||
//
|
||||
// If the display type is composite colour, generate four textureCoordinates,
|
||||
// spanning a range of -135, -45, +45, +135 degrees.
|
||||
//
|
||||
// If the display type is S-Video, generate three textureCoordinates, at
|
||||
// -45, 0, +45.
|
||||
std::unique_ptr<Shader> ScanTarget::qam_separation_shader() const {
|
||||
const bool is_svideo = modals_.display_type == DisplayType::SVideo;
|
||||
|
||||
// Sets up texture coordinates to run between startClock and endClock, mapping to
|
||||
// coordinates that correlate with four times the absolute value of the composite angle.
|
||||
std::string vertex_shader =
|
||||
"#version 150\n"
|
||||
|
||||
"uniform vec2 scale;"
|
||||
"uniform float rowHeight;"
|
||||
|
||||
"in vec2 startPoint;"
|
||||
"in vec2 endPoint;"
|
||||
|
||||
"in float startClock;"
|
||||
"in float startCompositeAngle;"
|
||||
"in float endClock;"
|
||||
@ -224,311 +560,96 @@ std::unique_ptr<Shader> ScanTarget::conversion_shader() const {
|
||||
"in float lineCompositeAmplitude;"
|
||||
|
||||
"uniform sampler2D textureName;"
|
||||
"uniform vec2 origin;"
|
||||
"uniform vec2 size;";
|
||||
"uniform float textureCoordinateOffsets[4];"
|
||||
|
||||
"out float compositeAngle;"
|
||||
"out float compositeAmplitude;"
|
||||
"out float oneOverCompositeAmplitude;";
|
||||
|
||||
std::string fragment_shader =
|
||||
"#version 150\n"
|
||||
|
||||
"uniform sampler2D textureName;"
|
||||
"uniform mat3 rgbToLumaChroma;"
|
||||
|
||||
"out vec4 fragColour;";
|
||||
"in float compositeAngle;"
|
||||
"in float compositeAmplitude;"
|
||||
"in float oneOverCompositeAmplitude;"
|
||||
|
||||
if(modals_.display_type != DisplayType::RGB) {
|
||||
vertex_shader +=
|
||||
"out float compositeAngle;"
|
||||
"out float compositeAmplitude;"
|
||||
"out float oneOverCompositeAmplitude;"
|
||||
|
||||
"uniform float textureCoordinateOffsets[7];"
|
||||
"uniform float angleOffsets[4];";
|
||||
fragment_shader +=
|
||||
"in float compositeAngle;"
|
||||
"in float compositeAmplitude;"
|
||||
"in float oneOverCompositeAmplitude;"
|
||||
"out vec4 fragColour;"
|
||||
"uniform vec4 compositeAngleOffsets;";
|
||||
|
||||
"uniform vec4 compositeAngleOffsets[2];";
|
||||
if(is_svideo) {
|
||||
vertex_shader += "out vec2 textureCoordinate;";
|
||||
fragment_shader += "in vec2 textureCoordinate;";
|
||||
} else {
|
||||
vertex_shader += "out vec2 textureCoordinates[4];";
|
||||
fragment_shader += "in vec2 textureCoordinates[4];";
|
||||
}
|
||||
|
||||
switch(modals_.display_type){
|
||||
case DisplayType::RGB:
|
||||
case DisplayType::CompositeMonochrome:
|
||||
vertex_shader += "out vec2 textureCoordinate;";
|
||||
fragment_shader += "in vec2 textureCoordinate;";
|
||||
break;
|
||||
|
||||
case DisplayType::CompositeColour:
|
||||
case DisplayType::SVideo:
|
||||
vertex_shader +=
|
||||
"out vec2 textureCoordinates[7];";
|
||||
fragment_shader +=
|
||||
"in vec2 textureCoordinates[7];";
|
||||
break;
|
||||
}
|
||||
|
||||
// Add the code to generate a proper output position; this applies to all display types.
|
||||
vertex_shader +=
|
||||
"void main(void) {"
|
||||
"float lateral = float(gl_VertexID & 1);"
|
||||
"float longitudinal = float((gl_VertexID & 2) >> 1);"
|
||||
"vec2 centrePoint = mix(startPoint, vec2(endPoint.x, startPoint.y), lateral) / scale;"
|
||||
"vec2 height = normalize(vec2(endPoint.x, startPoint.y) - startPoint).yx * (longitudinal - 0.5) * rowHeight;"
|
||||
"vec2 eyePosition = vec2(-1.0, 1.0) + vec2(2.0, -2.0) * (((centrePoint + height) - origin) / size);"
|
||||
"gl_Position = vec4(eyePosition, 0.0, 1.0);";
|
||||
"float centreClock = mix(startClock, endClock, lateral);"
|
||||
|
||||
// For everything other than RGB, calculate the two composite outputs.
|
||||
if(modals_.display_type != DisplayType::RGB) {
|
||||
vertex_shader +=
|
||||
"compositeAngle = (mix(startCompositeAngle, endCompositeAngle, lateral) / 32.0) * 3.141592654;"
|
||||
"compositeAngle = mix(startCompositeAngle, endCompositeAngle, lateral) / 64.0;"
|
||||
|
||||
"vec2 eyePosition = vec2(abs(compositeAngle) * 4.0, lineY + longitudinal) / vec2(2048.0, 2048.0);"
|
||||
"gl_Position = vec4(eyePosition*2.0 - vec2(1.0), 0.0, 1.0);"
|
||||
|
||||
"compositeAngle = compositeAngle * 2.0 * 3.141592654;"
|
||||
"compositeAmplitude = lineCompositeAmplitude / 255.0;"
|
||||
"oneOverCompositeAmplitude = mix(0.0, 255.0 / lineCompositeAmplitude, step(0.01, lineCompositeAmplitude));";
|
||||
}
|
||||
|
||||
// For RGB and monochrome composite, generate the single texture coordinate; otherwise generate either three
|
||||
// or four depending on the type of decoding to apply.
|
||||
switch(modals_.display_type){
|
||||
case DisplayType::RGB:
|
||||
case DisplayType::CompositeMonochrome:
|
||||
vertex_shader +=
|
||||
"textureCoordinate = vec2(mix(startClock, endClock, lateral), lineY + 0.5) / textureSize(textureName, 0);";
|
||||
break;
|
||||
|
||||
case DisplayType::CompositeColour:
|
||||
case DisplayType::SVideo:
|
||||
vertex_shader +=
|
||||
"float centreClock = mix(startClock, endClock, lateral);"
|
||||
"textureCoordinates[0] = vec2(centreClock + textureCoordinateOffsets[0], lineY + 0.5) / textureSize(textureName, 0);"
|
||||
"textureCoordinates[1] = vec2(centreClock + textureCoordinateOffsets[1], lineY + 0.5) / textureSize(textureName, 0);"
|
||||
"textureCoordinates[2] = vec2(centreClock + textureCoordinateOffsets[2], lineY + 0.5) / textureSize(textureName, 0);"
|
||||
"textureCoordinates[3] = vec2(centreClock + textureCoordinateOffsets[3], lineY + 0.5) / textureSize(textureName, 0);"
|
||||
"textureCoordinates[4] = vec2(centreClock + textureCoordinateOffsets[4], lineY + 0.5) / textureSize(textureName, 0);"
|
||||
"textureCoordinates[5] = vec2(centreClock + textureCoordinateOffsets[5], lineY + 0.5) / textureSize(textureName, 0);"
|
||||
"textureCoordinates[6] = vec2(centreClock + textureCoordinateOffsets[6], lineY + 0.5) / textureSize(textureName, 0);";
|
||||
break;
|
||||
if(is_svideo) {
|
||||
vertex_shader +=
|
||||
"textureCoordinate = vec2(centreClock, lineY + 0.5) / textureSize(textureName, 0);";
|
||||
} else {
|
||||
vertex_shader +=
|
||||
"textureCoordinates[0] = vec2(centreClock + textureCoordinateOffsets[0], lineY + 0.5) / textureSize(textureName, 0);"
|
||||
"textureCoordinates[1] = vec2(centreClock + textureCoordinateOffsets[1], lineY + 0.5) / textureSize(textureName, 0);"
|
||||
"textureCoordinates[2] = vec2(centreClock + textureCoordinateOffsets[2], lineY + 0.5) / textureSize(textureName, 0);"
|
||||
"textureCoordinates[3] = vec2(centreClock + textureCoordinateOffsets[3], lineY + 0.5) / textureSize(textureName, 0);";
|
||||
}
|
||||
|
||||
vertex_shader += "}";
|
||||
|
||||
// Compose a fragment shader.
|
||||
|
||||
if(modals_.display_type != DisplayType::RGB) {
|
||||
fragment_shader +=
|
||||
"uniform mat3 lumaChromaToRGB;"
|
||||
"uniform mat3 rgbToLumaChroma;";
|
||||
|
||||
if(modals_.display_type == DisplayType::SVideo) {
|
||||
fragment_shader +=
|
||||
"vec2 svideo_sample(vec2 coordinate, float angle) {";
|
||||
} else {
|
||||
fragment_shader +=
|
||||
"float composite_sample(vec2 coordinate, float angle) {";
|
||||
}
|
||||
|
||||
const bool is_svideo = modals_.display_type == DisplayType::SVideo;
|
||||
switch(modals_.input_data_type) {
|
||||
case InputDataType::Luminance1:
|
||||
case InputDataType::Luminance8:
|
||||
// Easy, just copy across.
|
||||
fragment_shader +=
|
||||
is_svideo ?
|
||||
"return vec2(textureLod(textureName, coordinate, 0).r, 0.0);" :
|
||||
"return textureLod(textureName, coordinate, 0).r;";
|
||||
break;
|
||||
|
||||
case InputDataType::PhaseLinkedLuminance8:
|
||||
fragment_shader +=
|
||||
"uint iPhase = uint((angle * 2.0 / 3.141592654) ) & 3u;";
|
||||
|
||||
fragment_shader +=
|
||||
is_svideo ?
|
||||
"return vec2(textureLod(textureName, coordinate, 0)[iPhase], 0.0);" :
|
||||
"return textureLod(textureName, coordinate, 0)[iPhase];";
|
||||
break;
|
||||
|
||||
case InputDataType::Luminance8Phase8:
|
||||
fragment_shader +=
|
||||
"vec2 yc = textureLod(textureName, coordinate, 0).rg;"
|
||||
|
||||
"float phaseOffset = 3.141592654 * 2.0 * 2.0 * yc.y;"
|
||||
"float rawChroma = step(yc.y, 0.75) * cos(angle + phaseOffset);";
|
||||
|
||||
fragment_shader +=
|
||||
is_svideo ?
|
||||
"return vec2(yc.x, rawChroma);" :
|
||||
"return mix(yc.x, rawChroma, compositeAmplitude);";
|
||||
break;
|
||||
|
||||
case InputDataType::Red1Green1Blue1:
|
||||
case InputDataType::Red2Green2Blue2:
|
||||
case InputDataType::Red4Green4Blue4:
|
||||
case InputDataType::Red8Green8Blue8:
|
||||
fragment_shader +=
|
||||
"vec3 colour = rgbToLumaChroma * textureLod(textureName, coordinate, 0).rgb;"
|
||||
"vec2 quadrature = vec2(cos(angle), sin(angle));";
|
||||
|
||||
fragment_shader +=
|
||||
is_svideo ?
|
||||
"return vec2(colour.r, dot(quadrature, colour.gb));" :
|
||||
"return mix(colour.r, dot(quadrature, colour.gb), compositeAmplitude);";
|
||||
break;
|
||||
}
|
||||
|
||||
fragment_shader += "}";
|
||||
}
|
||||
|
||||
fragment_shader +=
|
||||
"void main(void) {"
|
||||
"vec3 fragColour3;";
|
||||
sampling_function() +
|
||||
"void main(void) {";
|
||||
|
||||
switch(modals_.display_type) {
|
||||
case DisplayType::RGB:
|
||||
fragment_shader += "fragColour3 = textureLod(textureName, textureCoordinate, 0).rgb;";
|
||||
break;
|
||||
|
||||
case DisplayType::SVideo:
|
||||
if(modals_.display_type == DisplayType::SVideo) {
|
||||
fragment_shader +=
|
||||
"fragColour = vec4(svideo_sample(textureCoordinate, compositeAngle).rgg * vec3(1.0, cos(compositeAngle), sin(compositeAngle)), 1.0);";
|
||||
} else {
|
||||
fragment_shader +=
|
||||
// Sample four times over, at proper angle offsets.
|
||||
"vec2 samples[4] = vec2[4]("
|
||||
"svideo_sample(textureCoordinates[0], angles[0]),"
|
||||
"svideo_sample(textureCoordinates[1], angles[1]),"
|
||||
"svideo_sample(textureCoordinates[2], angles[2]),"
|
||||
"svideo_sample(textureCoordinates[3], angles[3])"
|
||||
");"
|
||||
"vec4 chrominances = vec4("
|
||||
"samples[0].y,"
|
||||
"samples[1].y,"
|
||||
"samples[2].y,"
|
||||
"samples[3].y"
|
||||
");"
|
||||
|
||||
// Split and average chrominance.
|
||||
"vec2 channels = vec2("
|
||||
"dot(cos(angles), chrominances),"
|
||||
"dot(sin(angles), chrominances)"
|
||||
") * vec2(0.25);"
|
||||
|
||||
// Apply a colour space conversion to get RGB.
|
||||
"fragColour3 = lumaChromaToRGB * vec3(samples[1].x, channels);";
|
||||
break;
|
||||
|
||||
case DisplayType::CompositeColour:
|
||||
fragment_shader +=
|
||||
"vec4 angles[2] = vec4[2]("
|
||||
"vec4(compositeAngle) + compositeAngleOffsets[0],"
|
||||
"vec4(compositeAngle) + compositeAngleOffsets[1]"
|
||||
");"
|
||||
"vec4 angles = compositeAngle + compositeAngleOffsets;"
|
||||
|
||||
// Sample four times over, at proper angle offsets.
|
||||
"vec4 samples[2] = vec4[2](vec4("
|
||||
"composite_sample(textureCoordinates[0], angles[0].x),"
|
||||
"composite_sample(textureCoordinates[1], angles[0].y),"
|
||||
"composite_sample(textureCoordinates[2], angles[0].z),"
|
||||
"composite_sample(textureCoordinates[3], angles[0].w)"
|
||||
"), vec4("
|
||||
"composite_sample(textureCoordinates[4], angles[1].x),"
|
||||
"composite_sample(textureCoordinates[5], angles[1].y),"
|
||||
"composite_sample(textureCoordinates[6], angles[1].z),"
|
||||
"0.0"
|
||||
"));"
|
||||
|
||||
// Compute a luminance for use if there's no colour information, now, before
|
||||
// modifying samples.
|
||||
"float mono_luminance = dot(vec3(samples[0].zw, samples[1].x), vec3(0.15, 0.7, 0.15));"
|
||||
"vec4 samples = vec4("
|
||||
"composite_sample(textureCoordinates[0], angles.x),"
|
||||
"composite_sample(textureCoordinates[1], angles.y),"
|
||||
"composite_sample(textureCoordinates[2], angles.z),"
|
||||
"composite_sample(textureCoordinates[3], angles.w)"
|
||||
");"
|
||||
|
||||
// Take the average to calculate luminance, then subtract that from all four samples to
|
||||
// give chrominance.
|
||||
"float luminances[4] = float[4]("
|
||||
"dot(samples[0], vec4(0.25)),"
|
||||
"dot(vec4(samples[0].yzw, samples[1].x), vec4(0.25)),"
|
||||
"dot(vec4(samples[0].zw, samples[1].xy), vec4(0.25)),"
|
||||
"dot(vec4(samples[0].w, samples[1].xyz), vec4(0.25))"
|
||||
");"
|
||||
"float luminance = dot(samples, vec4(0.25));"
|
||||
"float chrominance = (dot(samples.yz, vec2(0.5)) - luminance) * oneOverCompositeAmplitude;"
|
||||
|
||||
// Split and average chrominance.
|
||||
"vec4 chrominances = vec4("
|
||||
"samples[0].y - luminances[0],"
|
||||
"samples[0].z - luminances[1],"
|
||||
"samples[0].w - luminances[2],"
|
||||
"samples[1].x - luminances[3]"
|
||||
");"
|
||||
"vec4 chrominance_angles = vec4(angles[0].yzw, angles[1].x);"
|
||||
"vec2 channels = vec2("
|
||||
"dot(cos(chrominance_angles), chrominances),"
|
||||
"dot(sin(chrominance_angles), chrominances)"
|
||||
") * vec2(0.125 * oneOverCompositeAmplitude);"
|
||||
|
||||
// Apply a colour space conversion to get RGB.
|
||||
"fragColour3 = mix("
|
||||
"lumaChromaToRGB * vec3(luminances[2] / (1.0 - compositeAmplitude), channels),"
|
||||
"vec3(mono_luminance),"
|
||||
"step(oneOverCompositeAmplitude, 0.01)"
|
||||
");";
|
||||
break;
|
||||
|
||||
case DisplayType::CompositeMonochrome:
|
||||
fragment_shader += "fragColour3 = vec3(composite_sample(textureCoordinate, compositeAngle));";
|
||||
break;
|
||||
}
|
||||
|
||||
// Apply a brightness adjustment if requested.
|
||||
if(fabs(modals_.brightness - 1.0f) > 0.05f) {
|
||||
fragment_shader += "fragColour3 = fragColour3 * " + std::to_string(modals_.brightness) + ";";
|
||||
}
|
||||
|
||||
// Apply a gamma correction if required.
|
||||
if(fabs(output_gamma_ - modals_.intended_gamma) > 0.05f) {
|
||||
const float gamma_ratio = output_gamma_ / modals_.intended_gamma;
|
||||
fragment_shader += "fragColour3 = pow(fragColour3, vec3(" + std::to_string(gamma_ratio) + "));";
|
||||
}
|
||||
// Pack that all up and send it on its way.
|
||||
"fragColour = vec4(luminance, vec2(cos(compositeAngle), sin(compositeAngle)) * chrominance, 1.0);";
|
||||
};
|
||||
|
||||
fragment_shader +=
|
||||
"fragColour = vec4(fragColour3, 0.64);"
|
||||
"fragColour = fragColour*0.5 + vec4(0.5);"
|
||||
"}";
|
||||
|
||||
const auto shader = new Shader(
|
||||
return std::unique_ptr<Shader>(new Shader(
|
||||
vertex_shader,
|
||||
fragment_shader,
|
||||
{
|
||||
"startPoint",
|
||||
"endPoint",
|
||||
"startClock",
|
||||
"endClock",
|
||||
"lineY",
|
||||
"lineCompositeAmplitude",
|
||||
"startCompositeAngle",
|
||||
"endCompositeAngle"
|
||||
}
|
||||
);
|
||||
|
||||
// If this isn't an RGB or composite colour shader, set the proper colour space.
|
||||
if(modals_.display_type != DisplayType::RGB) {
|
||||
const float clocks_per_angle = float(modals_.cycles_per_line) * float(modals_.colour_cycle_denominator) / float(modals_.colour_cycle_numerator);
|
||||
GLfloat texture_offsets[7];
|
||||
GLfloat angles[8];
|
||||
for(int c = 0; c < 7; ++c) {
|
||||
GLfloat angle = (GLfloat(c) - 3.5f) / 4.0f;
|
||||
texture_offsets[c] = angle * clocks_per_angle;
|
||||
angles[c] = GLfloat(angle * 2.0f * M_PI);
|
||||
}
|
||||
shader->set_uniform("textureCoordinateOffsets", 1, 7, texture_offsets);
|
||||
shader->set_uniform("compositeAngleOffsets", 4, 2, angles);
|
||||
|
||||
switch(modals_.composite_colour_space) {
|
||||
case ColourSpace::YIQ: {
|
||||
const GLfloat rgbToYIQ[] = {0.299f, 0.596f, 0.211f, 0.587f, -0.274f, -0.523f, 0.114f, -0.322f, 0.312f};
|
||||
const GLfloat yiqToRGB[] = {1.0f, 1.0f, 1.0f, 0.956f, -0.272f, -1.106f, 0.621f, -0.647f, 1.703f};
|
||||
shader->set_uniform_matrix("lumaChromaToRGB", 3, false, yiqToRGB);
|
||||
shader->set_uniform_matrix("rgbToLumaChroma", 3, false, rgbToYIQ);
|
||||
} break;
|
||||
|
||||
case ColourSpace::YUV: {
|
||||
const GLfloat rgbToYUV[] = {0.299f, -0.14713f, 0.615f, 0.587f, -0.28886f, -0.51499f, 0.114f, 0.436f, -0.10001f};
|
||||
const GLfloat yuvToRGB[] = {1.0f, 1.0f, 1.0f, 0.0f, -0.39465f, 2.03211f, 1.13983f, -0.58060f, 0.0f};
|
||||
shader->set_uniform_matrix("lumaChromaToRGB", 3, false, yuvToRGB);
|
||||
shader->set_uniform_matrix("rgbToLumaChroma", 3, false, rgbToYUV);
|
||||
} break;
|
||||
}
|
||||
}
|
||||
|
||||
return std::unique_ptr<Shader>(shader);
|
||||
bindings(ShaderType::QAMSeparation)
|
||||
));
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user