mirror of
https://github.com/TomHarte/CLK.git
synced 2024-11-29 12:50:28 +00:00
Introduced an adapted version of the previous Clock Signal's FIR filter.
This commit is contained in:
parent
0edf165401
commit
7694297c83
@ -308,6 +308,7 @@
|
||||
4BBF99161C8FBA6F0075DAFB /* CRTRunBuilder.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 4BBF990C1C8FBA6F0075DAFB /* CRTRunBuilder.cpp */; };
|
||||
4BBF99171C8FBA6F0075DAFB /* Shader.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 4BBF99101C8FBA6F0075DAFB /* Shader.cpp */; };
|
||||
4BBF99181C8FBA6F0075DAFB /* TextureTarget.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 4BBF99121C8FBA6F0075DAFB /* TextureTarget.cpp */; };
|
||||
4BC76E691C98E31700E6EF73 /* FIRFilter.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 4BC76E671C98E31700E6EF73 /* FIRFilter.cpp */; };
|
||||
4BCB70B41C947DDC005B1712 /* plus1.rom in Resources */ = {isa = PBXBuildFile; fileRef = 4BCB70B31C947DDC005B1712 /* plus1.rom */; };
|
||||
4BE5F85E1C3E1C2500C43F01 /* basic.rom in Resources */ = {isa = PBXBuildFile; fileRef = 4BE5F85C1C3E1C2500C43F01 /* basic.rom */; };
|
||||
4BE5F85F1C3E1C2500C43F01 /* os.rom in Resources */ = {isa = PBXBuildFile; fileRef = 4BE5F85D1C3E1C2500C43F01 /* os.rom */; };
|
||||
@ -666,6 +667,8 @@
|
||||
4BBF99121C8FBA6F0075DAFB /* TextureTarget.cpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.cpp; path = TextureTarget.cpp; sourceTree = "<group>"; };
|
||||
4BBF99131C8FBA6F0075DAFB /* TextureTarget.hpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.h; path = TextureTarget.hpp; sourceTree = "<group>"; };
|
||||
4BBF99191C8FC2750075DAFB /* CRTTypes.hpp */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.cpp.h; path = CRTTypes.hpp; sourceTree = "<group>"; };
|
||||
4BC76E671C98E31700E6EF73 /* FIRFilter.cpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.cpp; path = FIRFilter.cpp; sourceTree = "<group>"; };
|
||||
4BC76E681C98E31700E6EF73 /* FIRFilter.hpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.h; path = FIRFilter.hpp; sourceTree = "<group>"; };
|
||||
4BCB70B31C947DDC005B1712 /* plus1.rom */ = {isa = PBXFileReference; lastKnownFileType = file; path = plus1.rom; sourceTree = "<group>"; };
|
||||
4BE5F85C1C3E1C2500C43F01 /* basic.rom */ = {isa = PBXFileReference; lastKnownFileType = file; path = basic.rom; sourceTree = "<group>"; };
|
||||
4BE5F85D1C3E1C2500C43F01 /* os.rom */ = {isa = PBXFileReference; lastKnownFileType = file; path = os.rom; sourceTree = "<group>"; };
|
||||
@ -733,6 +736,8 @@
|
||||
4B2409591C45DF85004DA684 /* SignalProcessing */ = {
|
||||
isa = PBXGroup;
|
||||
children = (
|
||||
4BC76E671C98E31700E6EF73 /* FIRFilter.cpp */,
|
||||
4BC76E681C98E31700E6EF73 /* FIRFilter.hpp */,
|
||||
4B24095A1C45DF85004DA684 /* Stepper.hpp */,
|
||||
);
|
||||
name = SignalProcessing;
|
||||
@ -1646,6 +1651,7 @@
|
||||
4B55CE581C3B7D360093A61B /* Atari2600Document.swift in Sources */,
|
||||
4B0EBFB81C487F2F00A11F35 /* AudioQueue.m in Sources */,
|
||||
4BBF99181C8FBA6F0075DAFB /* TextureTarget.cpp in Sources */,
|
||||
4BC76E691C98E31700E6EF73 /* FIRFilter.cpp in Sources */,
|
||||
4B55CE5F1C3B7D960093A61B /* MachineDocument.swift in Sources */,
|
||||
4B69FB441C4D941400B5F0AA /* TapeUEF.cpp in Sources */,
|
||||
4BBF99141C8FBA6F0075DAFB /* CRTInputBufferBuilder.cpp in Sources */,
|
||||
|
148
SignalProcessing/FIRFilter.cpp
Normal file
148
SignalProcessing/FIRFilter.cpp
Normal file
@ -0,0 +1,148 @@
|
||||
//
|
||||
// LinearFilter.c
|
||||
// Clock Signal
|
||||
//
|
||||
// Created by Thomas Harte on 01/10/2011.
|
||||
// Copyright 2011 Thomas Harte. All rights reserved.
|
||||
//
|
||||
|
||||
#include "FIRFilter.hpp"
|
||||
#include <math.h>
|
||||
|
||||
using namespace SignalProcessing;
|
||||
|
||||
/*
|
||||
|
||||
A Kaiser-Bessel filter is a real time window filter. It looks at the last n samples
|
||||
of an incoming data source and computes a filtered value, which is the value you'd
|
||||
get after applying the specified filter, at the centre of the sampling window.
|
||||
|
||||
Hence, if you request a 37 tap filter then filtering introduces a latency of 18
|
||||
samples. Suppose you're receiving input at 44,100Hz and using 4097 taps, then you'll
|
||||
introduce a latency of 2048 samples, which is about 46ms.
|
||||
|
||||
There's a correlation between the number of taps and the quality of the filtering.
|
||||
More samples = better filtering, at the cost of greater latency. Internally, applying
|
||||
the filter involves calculating a weighted sum of previous values, so increasing the
|
||||
number of taps is quite cheap in processing terms.
|
||||
|
||||
Original source for this filter:
|
||||
|
||||
"DIGITAL SIGNAL PROCESSING, II", IEEE Press, pages 123–126.
|
||||
*/
|
||||
|
||||
|
||||
// our little fixed point scheme
|
||||
#define kCSKaiserBesselFilterFixedMultiplier 32767.0f
|
||||
#define kCSKaiserBesselFilterFixedShift 15
|
||||
|
||||
/* ino evaluates the 0th order Bessel function at a */
|
||||
static float csfilter_ino(float a)
|
||||
{
|
||||
float d = 0.0f;
|
||||
float ds = 1.0f;
|
||||
float s = 1.0f;
|
||||
|
||||
do
|
||||
{
|
||||
d += 2.0f;
|
||||
ds *= (a * a) / (d * d);
|
||||
s += ds;
|
||||
}
|
||||
while(ds > s*1e-6f);
|
||||
|
||||
return s;
|
||||
}
|
||||
|
||||
static void csfilter_setIdealisedFilterResponse(short *filterCoefficients, float *A, float attenuation, unsigned int numberOfTaps)
|
||||
{
|
||||
/* calculate alpha, which is the Kaiser-Bessel window shape factor */
|
||||
float a; // to take the place of alpha in the normal derivation
|
||||
|
||||
if(attenuation < 21.0f)
|
||||
a = 0.0f;
|
||||
else
|
||||
{
|
||||
if(attenuation > 50.0f)
|
||||
a = 0.1102f * (attenuation - 8.7f);
|
||||
else
|
||||
a = 0.5842f * powf(attenuation - 21.0f, 0.4f) + 0.7886f * (attenuation - 21.0f);
|
||||
}
|
||||
|
||||
float *filterCoefficientsFloat = (float *)malloc(sizeof(float) * numberOfTaps);
|
||||
|
||||
/* work out the right hand side of the filter coefficients */
|
||||
unsigned int Np = (numberOfTaps - 1) / 2;
|
||||
float I0 = csfilter_ino(a);
|
||||
float NpSquared = (float)(Np * Np);
|
||||
for(unsigned int i = 0; i <= Np; i++)
|
||||
{
|
||||
filterCoefficientsFloat[Np + i] =
|
||||
A[i] *
|
||||
csfilter_ino(a * sqrtf(1.0f - ((float)(i * i) / NpSquared) )) /
|
||||
I0;
|
||||
}
|
||||
|
||||
/* coefficients are symmetrical, so copy from right hand side to left side */
|
||||
for(unsigned int i = 0; i < Np; i++)
|
||||
{
|
||||
filterCoefficientsFloat[i] = filterCoefficientsFloat[numberOfTaps - 1 - i];
|
||||
}
|
||||
|
||||
/* scale back up so that we retain 100% of input volume */
|
||||
float coefficientTotal = 0.0f;
|
||||
for(unsigned int i = 0; i < numberOfTaps; i++)
|
||||
{
|
||||
coefficientTotal += filterCoefficientsFloat[i];
|
||||
}
|
||||
|
||||
/* we'll also need integer versions, potentially */
|
||||
float coefficientMultiplier = 1.0f / coefficientTotal;
|
||||
for(unsigned int i = 0; i < numberOfTaps; i++)
|
||||
{
|
||||
filterCoefficients[i] = (short)(filterCoefficientsFloat[i] * kCSKaiserBesselFilterFixedMultiplier * coefficientMultiplier);
|
||||
}
|
||||
|
||||
free(filterCoefficientsFloat);
|
||||
}
|
||||
|
||||
FIRFilter::FIRFilter(unsigned int number_of_taps, unsigned int input_sample_rate, float low_frequency, float high_frequency, float attenuation)
|
||||
{
|
||||
// we must be asked to filter based on an odd number of
|
||||
// taps, and at least three
|
||||
if(number_of_taps < 3) number_of_taps = 3;
|
||||
if(attenuation < 21.0f) attenuation = 21.0f;
|
||||
|
||||
// ensure we have an odd number of taps
|
||||
number_of_taps |= 1;
|
||||
|
||||
// store instance variables
|
||||
number_of_taps_ = number_of_taps;
|
||||
filter_coefficients_ = new short[number_of_taps_];
|
||||
|
||||
/* calculate idealised filter response */
|
||||
unsigned int Np = (number_of_taps - 1) / 2;
|
||||
float twoOverSampleRate = 2.0f / (float)input_sample_rate;
|
||||
|
||||
float *A = new float[Np+1];
|
||||
A[0] = 2.0f * (high_frequency - low_frequency) / (float)input_sample_rate;
|
||||
for(unsigned int i = 1; i <= Np; i++)
|
||||
{
|
||||
float iPi = (float)i * (float)M_PI;
|
||||
A[i] =
|
||||
(
|
||||
sinf(twoOverSampleRate * iPi * high_frequency) -
|
||||
sinf(twoOverSampleRate * iPi * low_frequency)
|
||||
) / iPi;
|
||||
}
|
||||
|
||||
csfilter_setIdealisedFilterResponse(filter_coefficients_, A, attenuation, number_of_taps_);
|
||||
|
||||
/* clean up */
|
||||
delete[] A;
|
||||
}
|
||||
|
||||
FIRFilter::~FIRFilter()
|
||||
{
|
||||
delete[] filter_coefficients_;
|
||||
}
|
83
SignalProcessing/FIRFilter.hpp
Normal file
83
SignalProcessing/FIRFilter.hpp
Normal file
@ -0,0 +1,83 @@
|
||||
//
|
||||
// LinearFilter.h
|
||||
// Clock Signal
|
||||
//
|
||||
// Created by Thomas Harte on 01/10/2011.
|
||||
// Copyright 2011 Thomas Harte. All rights reserved.
|
||||
//
|
||||
|
||||
#ifndef FIRFilter_hpp
|
||||
#define FIRFilter_hpp
|
||||
|
||||
/*
|
||||
|
||||
The FIR filter takes a 1d PCM signal with
|
||||
a given sample rate and filters it according
|
||||
to a specified filter (band pass only at
|
||||
present, more to come if required). The number
|
||||
of taps (ie, samples considered simultaneously
|
||||
to make an output sample) is configurable;
|
||||
smaller numbers permit a filter that operates
|
||||
more quickly and with less lag but less
|
||||
effectively.
|
||||
|
||||
FIR filters are window functions; expected use is
|
||||
to point sample an input that has been subject to
|
||||
a filter.
|
||||
|
||||
*/
|
||||
|
||||
#ifdef __APPLE__
|
||||
#include <Accelerate/Accelerate.h>
|
||||
#endif
|
||||
|
||||
namespace SignalProcessing {
|
||||
|
||||
class FIRFilter {
|
||||
public:
|
||||
/*!
|
||||
Creates an instance of @c FIRFilter.
|
||||
|
||||
@param number_of_taps The size of window for input data.
|
||||
@param input_sample_rate The sampling rate of the input signal.
|
||||
@param low_frequency The lowest frequency of signal to retain in the output.
|
||||
@param high_frequency The highest frequency of signal to retain in the output.
|
||||
@param attenuation The attenuation of the output.
|
||||
*/
|
||||
FIRFilter(unsigned int number_of_taps, unsigned int input_sample_rate, float low_frequency, float high_frequency, float attenuation);
|
||||
|
||||
~FIRFilter();
|
||||
|
||||
/*! A suggested default attenuation value. */
|
||||
const float DefaultAttenuation = 60.0f;
|
||||
|
||||
/*!
|
||||
Applies the filter to one batch of input samples, returning the net result.
|
||||
|
||||
@param src The source buffer to apply the filter to.
|
||||
@returns The result of applying the filter.
|
||||
*/
|
||||
inline short apply(const short *src)
|
||||
{
|
||||
#ifdef __APPLE__
|
||||
short result;
|
||||
vDSP_dotpr_s1_15(filter_coefficients_, 1, src, 1, &result, number_of_taps_);
|
||||
return result;
|
||||
#else
|
||||
int outputValue = 0;
|
||||
for(unsigned int c = 0; c < number_of_taps_; c++)
|
||||
{
|
||||
outputValue += filter_coefficients_[c] * src[c];
|
||||
}
|
||||
return (short)(outputValue >> kCSKaiserBesselFilterFixedShift);
|
||||
#endif
|
||||
}
|
||||
|
||||
private:
|
||||
short *filter_coefficients_;
|
||||
unsigned int number_of_taps_;
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
#endif
|
Loading…
Reference in New Issue
Block a user