1
0
mirror of https://github.com/TomHarte/CLK.git synced 2024-11-29 12:50:28 +00:00

Corrects sample spacing, and removes a lot of detritus.

This commit is contained in:
Thomas Harte 2019-01-12 18:36:54 -05:00
parent 25a1f23fc0
commit 7c2c243985

View File

@ -269,115 +269,6 @@ void ScanTarget::enable_vertex_attributes(ShaderType type, Shader &target) {
} }
std::unique_ptr<Shader> ScanTarget::composition_shader(InputDataType input_data_type) { std::unique_ptr<Shader> ScanTarget::composition_shader(InputDataType input_data_type) {
/* std::string fragment_shader =
"#version 150\n"
"out vec3 fragColour;"
"in vec2 textureCoordinate;"
"in float compositeAngle;"
"in float oneOverCompositeAmplitude;"
"uniform mat3 lumaChromaToRGB;"
"uniform mat3 rgbToLumaChroma;"
"uniform usampler2D textureName;"
"uniform float phaseOffset;"
"void main(void) {";
DisplayType computed_display_type;
switch(input_data_type) {
case InputDataType::Luminance1:
computed_display_type = DisplayType::CompositeMonochrome;
fragment_shader += "fragColour = texture(textureName, textureCoordinate).rrr;";
if(computed_display_type != display_type) {
fragment_shader += "fragColour = clamp(fragColour, 0.0, 1.0);";
}
break;
case InputDataType::Luminance8:
computed_display_type = DisplayType::CompositeMonochrome;
fragment_shader += "fragColour = vec3(texture(textureName, textureCoordinate).r / 255.0);";
break;
case InputDataType::PhaseLinkedLuminance8:
computed_display_type = DisplayType::CompositeMonochrome;
fragment_shader +=
"uint iPhase = uint((compositeAngle * 2.0 / 3.141592654) + phaseOffset*4.0) & 3u;"
"fragColour = vec3(texture(textureName, textureCoordinate)[iPhase] / 255.0);";
break;
case InputDataType::Luminance8Phase8:
computed_display_type = DisplayType::SVideo;
fragment_shader +=
"vec2 yc = texture(textureName, textureCoordinate).rg / vec2(255.0);"
"float phaseOffset = 3.141592654 * 2.0 * 2.0 * yc.y;"
"float rawChroma = step(yc.y, 0.75) * cos(compositeAngle + phaseOffset);"
"fragColour = vec3(yc.x, 0.5 + rawChroma*0.5, 0.0);";
break;
case InputDataType::Red1Green1Blue1:
computed_display_type = DisplayType::RGB;
fragment_shader +=
"uint textureValue = texture(textureName, textureCoordinate).r;"
"fragColour = uvec3(textureValue) & uvec3(4u, 2u, 1u);";
if(computed_display_type != display_type) {
fragment_shader += "fragColour = clamp(fragColour, 0.0, 1.0);";
}
break;
case InputDataType::Red2Green2Blue2:
computed_display_type = DisplayType::RGB;
fragment_shader +=
"uint textureValue = texture(textureName, textureCoordinate).r;"
"fragColour = vec3(float((textureValue >> 4) & 3u), float((textureValue >> 2) & 3u), float(textureValue & 3u)) / 3.0;";
break;
case InputDataType::Red4Green4Blue4:
computed_display_type = DisplayType::RGB;
fragment_shader +=
"uvec2 textureValue = texture(textureName, textureCoordinate).rg;"
"fragColour = vec3(float(textureValue.r) / 15.0, float(textureValue.g & 240u) / 240.0, float(textureValue.g & 15u) / 15.0);";
break;
case InputDataType::Red8Green8Blue8:
computed_display_type = DisplayType::RGB;
fragment_shader += "fragColour = texture(textureName, textureCoordinate).rgb / vec3(255.0);";
break;
}*/
// If the input type is RGB but the output type isn't then
// there'll definitely be an RGB to SVideo step.
// if(computed_display_type == DisplayType::RGB && display_type != DisplayType::RGB) {
// fragment_shader +=
// "vec3 composite_colour = rgbToLumaChroma * fragColour;"
// "vec2 quadrature = vec2(cos(compositeAngle), sin(compositeAngle));"
// "fragColour = vec3(composite_colour.r, 0.5 + dot(quadrature, composite_colour.gb)*0.5, 0.0);";
// }
// If the output type is SVideo, throw in an attempt to separate the two chrominance
// channels here.
// if(display_type == DisplayType::SVideo) {
// if(computed_display_type != DisplayType::RGB) {
// fragment_shader +=
// "vec2 quadrature = vec2(cos(compositeAngle), sin(compositeAngle));";
// }
// fragment_shader +=
// "vec2 chroma = (((fragColour.y - 0.5)*2.0) * quadrature)*0.5 + vec2(0.5);"
// "fragColour = vec3(fragColour.x, chroma);";
// }
// Add an SVideo to composite step if necessary.
// if(
// (display_type == DisplayType::CompositeMonochrome || display_type == DisplayType::CompositeColour) &&
// computed_display_type != DisplayType::CompositeMonochrome
// ) {
// fragment_shader += "fragColour = vec3(mix(fragColour.r, 2.0*(fragColour.g - 0.5), 1.0 / oneOverCompositeAmplitude));";
// }
std::string fragment_shader = std::string fragment_shader =
"#version 150\n" "#version 150\n"
@ -527,12 +418,12 @@ std::unique_ptr<Shader> ScanTarget::conversion_shader(InputDataType input_data_t
case DisplayType::CompositeColour: case DisplayType::CompositeColour:
vertex_shader += vertex_shader +=
"float centreCoordinate = mix(startClock, endClock, lateral);" "float centreClock = mix(startClock, endClock, lateral);"
"float samplesPerAngle = (endClock - startClock) / (abs(endCompositeAngle - startCompositeAngle) / 32.0);" "float clocksPerAngle = (endClock - startClock) / (abs(endCompositeAngle - startCompositeAngle) / 64.0);"
"textureCoordinates[0] = vec2(centreCoordinate - 0.375*samplesPerAngle, lineY + 0.5) / textureSize(textureName, 0);" "textureCoordinates[0] = vec2(centreClock - 0.375*clocksPerAngle, lineY + 0.5) / textureSize(textureName, 0);"
"textureCoordinates[1] = vec2(centreCoordinate - 0.125*samplesPerAngle, lineY + 0.5) / textureSize(textureName, 0);" "textureCoordinates[1] = vec2(centreClock - 0.125*clocksPerAngle, lineY + 0.5) / textureSize(textureName, 0);"
"textureCoordinates[2] = vec2(centreCoordinate + 0.125*samplesPerAngle, lineY + 0.5) / textureSize(textureName, 0);" "textureCoordinates[2] = vec2(centreClock + 0.125*clocksPerAngle, lineY + 0.5) / textureSize(textureName, 0);"
"textureCoordinates[3] = vec2(centreCoordinate + 0.375*samplesPerAngle, lineY + 0.5) / textureSize(textureName, 0);"; "textureCoordinates[3] = vec2(centreClock + 0.375*clocksPerAngle, lineY + 0.5) / textureSize(textureName, 0);";
break; break;
case DisplayType::SVideo: case DisplayType::SVideo:
@ -632,7 +523,7 @@ std::unique_ptr<Shader> ScanTarget::conversion_shader(InputDataType input_data_t
"vec2 channels = vec2(" "vec2 channels = vec2("
"dot(cos(angles), samples)," "dot(cos(angles), samples),"
"dot(sin(angles), samples)" "dot(sin(angles), samples)"
") / vec2(2.0);" ") * vec2(0.25);"
// Apply a colour space conversion to get RGB. // Apply a colour space conversion to get RGB.
"fragColour3 = lumaChromaToRGB * vec3(luminance, channels);"; "fragColour3 = lumaChromaToRGB * vec3(luminance, channels);";
@ -675,149 +566,3 @@ std::unique_ptr<Shader> ScanTarget::conversion_shader(InputDataType input_data_t
return std::unique_ptr<Shader>(shader); return std::unique_ptr<Shader>(shader);
} }
//
//SignalProcessing::FIRFilter ScanTarget::colour_filter(int colour_cycle_numerator, int colour_cycle_denominator, int processing_width, float low_cutoff, float high_cutoff) {
// const float cycles_per_expanded_line = (float(colour_cycle_numerator) / float(colour_cycle_denominator)) / (float(processing_width) / float(LineBufferWidth));
// return SignalProcessing::FIRFilter(15, float(LineBufferWidth), cycles_per_expanded_line * low_cutoff, cycles_per_expanded_line * high_cutoff);
//}
//
//std::unique_ptr<Shader> ScanTarget::svideo_to_rgb_shader(int colour_cycle_numerator, int colour_cycle_denominator, int processing_width) {
// /*
// Composite to S-Video conversion is achieved by filtering the input signal to obtain luminance, and then subtracting that
// from the original to get chrominance.
//
// (Colour cycle numerator)/(Colour cycle denominator) gives the number of colour cycles in (processing_width / LineBufferWidth),
// there'll be at least four samples per colour clock and in practice at most just a shade more than 9.
// */
// auto shader = std::unique_ptr<Shader>(new Shader(
// glsl_globals(ShaderType::ProcessedScan) + glsl_default_vertex_shader(ShaderType::ProcessedScan),
// "#version 150\n"
//
// "in vec2 textureCoordinates[15];"
// "in vec2 chromaCoordinates[2];"
// "in float compositeAngle;"
//
//// "uniform vec4 chromaWeights[4];"
//// "uniform vec4 lumaWeights[4];"
// "uniform sampler2D textureName;"
// "uniform mat3 lumaChromaToRGB;"
//
// "out vec3 fragColour;"
// "void main() {"
// "vec2 angles = vec2(compositeAngle - 1.570795827, compositeAngle + 1.570795827);"
//
// "vec2 sines = sin(angles) * vec2(0.5) + vec2(0.5);"
// "vec2 coses = cos(angles);"
// "float denominator = sines.y * coses.x - sines.x * coses.y;"
//
// "vec2 samples = vec2(texture(textureName, chromaCoordinates[0]).g, texture(textureName, chromaCoordinates[1]).g);"
//
// "float channel1 = (samples.x * sines.x - samples.y * sines.y) / denominator;"
// "float channel2 = (samples.x * coses.x - samples.y * coses.y) / denominator;"
//
//// "fragColour = lumaChromaToRGB * vec3(texture(textureName, textureCoordinates[7]).r, channel1, channel2);"
// "fragColour = vec3(sines.x + sines.y, 0.0, 0.0);"
// //, 0.0);"
//
//// "fragColour = lumaChromaToRGB * vec3(texture(textureName, textureCoordinates[7]).g, 0.0, 0.0);"
//// "fragColour = vec3(0.5);"
///* "vec3 samples[15] = vec3[15]("
// "texture(textureName, textureCoordinates[0]).rgb,"
// "texture(textureName, textureCoordinates[1]).rgb,"
// "texture(textureName, textureCoordinates[2]).rgb,"
// "texture(textureName, textureCoordinates[3]).rgb,"
// "texture(textureName, textureCoordinates[4]).rgb,"
// "texture(textureName, textureCoordinates[5]).rgb,"
// "texture(textureName, textureCoordinates[6]).rgb,"
// "texture(textureName, textureCoordinates[7]).rgb,"
// "texture(textureName, textureCoordinates[8]).rgb,"
// "texture(textureName, textureCoordinates[9]).rgb,"
// "texture(textureName, textureCoordinates[10]).rgb,"
// "texture(textureName, textureCoordinates[11]).rgb,"
// "texture(textureName, textureCoordinates[12]).rgb,"
// "texture(textureName, textureCoordinates[13]).rgb,"
// "texture(textureName, textureCoordinates[14]).rgb"
// ");"
// "vec4 samples0[4] = vec4[4]("
// "vec4(samples[0].r, samples[1].r, samples[2].r, samples[3].r),"
// "vec4(samples[4].r, samples[5].r, samples[6].r, samples[7].r),"
// "vec4(samples[8].r, samples[9].r, samples[10].r, samples[11].r),"
// "vec4(samples[12].r, samples[13].r, samples[14].r, 0.0)"
// ");"
// "vec4 samples1[4] = vec4[4]("
// "vec4(samples[0].g, samples[1].g, samples[2].g, samples[3].g),"
// "vec4(samples[4].g, samples[5].g, samples[6].g, samples[7].g),"
// "vec4(samples[8].g, samples[9].g, samples[10].g, samples[11].g),"
// "vec4(samples[12].g, samples[13].g, samples[14].g, 0.0)"
// ");"
// "vec4 samples2[4] = vec4[4]("
// "vec4(samples[0].b, samples[1].b, samples[2].b, samples[3].b),"
// "vec4(samples[4].b, samples[5].b, samples[6].b, samples[7].b),"
// "vec4(samples[8].b, samples[9].b, samples[10].b, samples[11].b),"
// "vec4(samples[12].b, samples[13].b, samples[14].b, 0.0)"
// ");"
// "float channel0 = dot(lumaWeights[0], samples0[0]) + dot(lumaWeights[1], samples0[1]) + dot(lumaWeights[2], samples0[2]) + dot(lumaWeights[3], samples0[3]);"
// "float channel1 = dot(chromaWeights[0], samples1[0]) + dot(chromaWeights[1], samples1[1]) + dot(chromaWeights[2], samples1[2]) + dot(chromaWeights[3], samples1[3]);"
// "float channel2 = dot(chromaWeights[0], samples2[0]) + dot(chromaWeights[1], samples2[1]) + dot(chromaWeights[2], samples2[2]) + dot(chromaWeights[3], samples2[3]);"
// "vec2 chroma = vec2(channel1, channel2)*2.0 - vec2(1.0);"
// "fragColour = lumaChromaToRGB * vec3(channel0, chroma);"*/
// "}",
// attribute_bindings(ShaderType::ProcessedScan)
// ));
//
// const float cycles_per_expanded_line = (float(colour_cycle_numerator) / float(colour_cycle_denominator)) / (float(processing_width) / float(LineBufferWidth));
// const float chroma_offset = 0.25f / cycles_per_expanded_line;
// shader->set_uniform("chromaOffset", chroma_offset);
//
//// auto chroma_coefficients = colour_filter(colour_cycle_numerator, colour_cycle_denominator, processing_width, 0.0f, 0.25f).get_coefficients();
//// chroma_coefficients.push_back(0.0f);
//// shader->set_uniform("chromaWeights", 4, 4, chroma_coefficients.data());
////
//// auto luma_coefficients = colour_filter(colour_cycle_numerator, colour_cycle_denominator, processing_width, 0.0f, 0.15f).get_coefficients();
//// luma_coefficients.push_back(0.0f);
//// shader->set_uniform("lumaWeights", 4, 4, luma_coefficients.data());
//
// shader->set_uniform("edgeExpansion", 20);
//
// return shader;
//}
//
//std::unique_ptr<Shader> ScanTarget::composite_to_svideo_shader(int colour_cycle_numerator, int colour_cycle_denominator, int processing_width) {
// auto shader = std::unique_ptr<Shader>(new Shader(
// glsl_globals(ShaderType::ProcessedScan) + glsl_default_vertex_shader(ShaderType::ProcessedScan),
// "#version 150\n"
//
// "in vec2 textureCoordinates[15];"
// "in float compositeAngle;"
// "in float oneOverCompositeAmplitude;"
//
// "uniform vec4 lumaWeights[4];"
// "uniform sampler2D textureName;"
//
// "out vec3 fragColour;"
// "void main() {"
// "vec4 samples[4] = vec4[4]("
// "vec4(texture(textureName, textureCoordinates[0]).r, texture(textureName, textureCoordinates[1]).r, texture(textureName, textureCoordinates[2]).r, texture(textureName, textureCoordinates[3]).r),"
// "vec4(texture(textureName, textureCoordinates[4]).r, texture(textureName, textureCoordinates[5]).r, texture(textureName, textureCoordinates[6]).r, texture(textureName, textureCoordinates[7]).r),"
// "vec4(texture(textureName, textureCoordinates[8]).r, texture(textureName, textureCoordinates[9]).r, texture(textureName, textureCoordinates[10]).r, texture(textureName, textureCoordinates[11]).r),"
// "vec4(texture(textureName, textureCoordinates[12]).r, texture(textureName, textureCoordinates[13]).r, texture(textureName, textureCoordinates[14]).r, 0.0)"
// ");"
// "float luma = dot(lumaWeights[0], samples[0]) + dot(lumaWeights[1], samples[1]) + dot(lumaWeights[2], samples[2]) + dot(lumaWeights[3], samples[3]);"
// "vec2 quadrature = vec2(cos(compositeAngle), sin(compositeAngle));"
// "vec2 chroma = ((samples[1].a - luma) * oneOverCompositeAmplitude)*quadrature;"
// "fragColour = vec3(samples[1].a, chroma*0.5 + vec2(0.5));"
// "}",
// attribute_bindings(ShaderType::ProcessedScan)
// ));
//
// auto luma_low = colour_filter(colour_cycle_numerator, colour_cycle_denominator, processing_width, 0.0f, 0.9f);
// auto luma_coefficients = luma_low.get_coefficients();
// luma_coefficients.push_back(0.0f);
// shader->set_uniform("lumaWeights", 4, 4, luma_coefficients.data());
//
// shader->set_uniform("edgeExpansion", 10);
//
// return shader;
//}
//