1
0
mirror of https://github.com/TomHarte/CLK.git synced 2025-01-26 00:30:29 +00:00

Attempt a complete block data transfer.

This commit is contained in:
Thomas Harte 2024-03-01 14:48:36 -05:00
parent f2f59a4de5
commit 85b7afd530

View File

@ -360,76 +360,50 @@ struct Scheduler {
template <Flags f> void perform(BlockDataTransfer transfer) { template <Flags f> void perform(BlockDataTransfer transfer) {
constexpr BlockDataTransferFlags flags(f); constexpr BlockDataTransferFlags flags(f);
// TODO: inclusion of the base in the register list. // Grab a copy of the list of registers to transfer.
const uint16_t list = transfer.register_list();
// Read the base address and take a copy in case a data abort means that
// it has to be restored later, and to write that value rather than
// the final address if the base register is first in the write-out list.
uint32_t address = transfer.base() == 15 ? uint32_t address = transfer.base() == 15 ?
registers_.pc_status(8) : registers_.pc_status(8) :
registers_.active[transfer.base()]; registers_.active[transfer.base()];
const uint32_t initial_address = address; const uint32_t initial_address = address;
const uint16_t list = transfer.register_list();
// Figure out what the final address will be, since that's what'll be
// in the output if the base register is second or beyond in the
// write-out list.
//
// Writes are always ordered from lowest address to highest; adjust the
// start address if this write is supposed to fill memory downward from
// the base.
// TODO: use std::popcount when adopting C++20.
uint32_t total = ((list & 0xa) >> 1) + (list & 0x5);
total = ((list & 0xc) >> 2) + (list & 0x3);
uint32_t final_address;
if constexpr (!flags.add_offset()) {
final_address = address + total * 4;
address = final_address;
} else {
final_address = address + total * 4;
}
// For loads, keep a record of the value replaced by the last load and
// where it came from. A data abort cancels both the current load and
// the one before it, so this is used by this implementation to undo
// the previous load in that case.
struct { struct {
uint32_t *target = nullptr; uint32_t *target = nullptr;
uint32_t value; uint32_t value;
} last_replacement; } last_replacement;
// Writes are always from lowest address to highest; asking for storage downward // Check whether access is forced ot the user bank; if so then switch
// just results in predecrementation of the address. // to it now. Also keep track of the original mode to switch back at
if constexpr (!flags.add_offset()) { // the end.
uint32_t total = ((list & 0xa) >> 1) + (list & 0x5); const Mode original_mode = registers_.mode();
total = ((list & 0xc) >> 2) + (list & 0x3);
address -= total * 4;
}
[[maybe_unused]] uint32_t final_address = address;
bool visits_succeeded = true;
const auto visit = [&](uint32_t &value) {
if constexpr (flags.pre_index() == flags.add_offset()) {
address += 4;
}
if constexpr (flags.operation() == BlockDataTransferFlags::Operation::STM) {
// "If the abort occurs during a store multiple instruction, ARM takes little action until
// the instruction completes, whereupon it enters the data abort trap. The memory manager is
// responsible for preventing erroneous writes to the memory."
visits_succeeded &= bus_.template write<uint32_t>(address, value, registers_.mode(), false);
} else {
// When ARM detects a data abort during a load multiple instruction, it modifies the operation of
// the instruction to ensure that recovery is possible.
//
// * Overwriting of registers stops when the abort happens. The aborting load will not
// take place, nor will the preceding one ...
// * The base register is restored, to its modified value if write-back was requested.
if(visits_succeeded) {
const uint32_t replaced = value;
visits_succeeded &= bus_.template read<uint32_t>(address, value, registers_.mode(), false);
if(visits_succeeded) {
last_replacement.value = replaced;
last_replacement.target = &value;
} else {
if(last_replacement.target) {
*last_replacement.target = last_replacement.value;
}
if constexpr (!flags.write_back_address()) {
if(transfer.base() != 15) {
registers_.active[transfer.base()] = initial_address;
}
}
}
}
}
if constexpr (!flags.pre_index() != flags.add_offset()) {
address += 4;
}
};
// Handle forcing transfer of the user bank.
Mode original_mode = registers_.mode();
const bool adopt_user_mode = const bool adopt_user_mode =
( (
flags.operation() == BlockDataTransferFlags::Operation::STM && flags.operation() == BlockDataTransferFlags::Operation::STM &&
@ -443,19 +417,107 @@ struct Scheduler {
registers_.set_mode(Mode::User); registers_.set_mode(Mode::User);
} }
bool address_error = false;
// Keep track of whether all accesses succeeded in order potentially to
// throw a data abort later.
bool accesses_succeeded = true;
const auto access = [&](uint32_t &value) {
// Update address in advance for:
// * pre-indexed upward stores; and
// * post-indxed downward stores.
if constexpr (flags.pre_index() == flags.add_offset()) {
address += 4;
}
if constexpr (flags.operation() == BlockDataTransferFlags::Operation::STM) {
if(!address_error) {
// "If the abort occurs during a store multiple instruction, ARM takes little action until
// the instruction completes, whereupon it enters the data abort trap. The memory manager is
// responsible for preventing erroneous writes to the memory."
accesses_succeeded &= bus_.template write<uint32_t>(address, value, registers_.mode(), false);
}
} else {
// When ARM detects a data abort during a load multiple instruction, it modifies the operation of
// the instruction to ensure that recovery is possible.
//
// * Overwriting of registers stops when the abort happens. The aborting load will not
// take place, nor will the preceding one ...
// * The base register is restored, to its modified value if write-back was requested.
if(accesses_succeeded) {
const uint32_t replaced = value;
accesses_succeeded &= bus_.template read<uint32_t>(address, value, registers_.mode(), false);
// Update the last-modified slot if the access succeeded; otherwise
// undo the last modification if there was one, and undo the base
// address change.
if(accesses_succeeded) {
last_replacement.value = replaced;
last_replacement.target = &value;
} else {
if(last_replacement.target) {
*last_replacement.target = last_replacement.value;
}
// Also restore the base register.
if(transfer.base() != 15) {
if constexpr (flags.write_back_address()) {
registers_.active[transfer.base()] = final_address;
} else {
registers_.active[transfer.base()] = initial_address;
}
}
}
} else {
// Implicitly: do the access anyway, but don't store the value. I think.
uint32_t throwaway;
bus_.template read<uint32_t>(address, throwaway, registers_.mode(), false);
}
}
// Update address after the fact for:
// * post-indexed upward stores; and
// * pre-indxed downward stores.
if constexpr (flags.pre_index() != flags.add_offset()) {
address += 4;
}
};
// Check for an address exception.
address_error = address >= (1 << 26);
// Write out registers 1 to 14.
for(int c = 0; c < 15; c++) { for(int c = 0; c < 15; c++) {
if(list & (1 << c)) { if(list & (1 << c)) {
visit(registers_.active[c]); access(registers_.active[c]);
// Modify base register after each write if writeback is enabled.
// This'll ensure the unmodified value goes out if it was the
// first-selected register only.
if constexpr (flags.write_back_address()) {
if(transfer.base() != 15) {
registers_.active[transfer.base()] = final_address;
}
}
} }
} }
// Definitively write back, even if the earlier register list
// was empty.
if constexpr (flags.write_back_address()) {
if(transfer.base() != 15) {
registers_.active[transfer.base()] = final_address;
}
}
// Read or write the program counter as a special case if it was in the list.
if(list & (1 << 15)) { if(list & (1 << 15)) {
uint32_t value; uint32_t value;
if constexpr (flags.operation() == BlockDataTransferFlags::Operation::STM) { if constexpr (flags.operation() == BlockDataTransferFlags::Operation::STM) {
value = registers_.pc_status(12); value = registers_.pc_status(12);
visit(value); access(value);
} else { } else {
visit(value); access(value);
registers_.set_pc(value); registers_.set_pc(value);
if constexpr (flags.load_psr()) { if constexpr (flags.load_psr()) {
registers_.set_status(value); registers_.set_status(value);
@ -463,21 +525,16 @@ struct Scheduler {
} }
} }
if constexpr (flags.write_back_address()) { // If user mode was unnaturally forced, switch back to the actual
if(transfer.base() != 15) { // current operating mode.
if constexpr (flags.add_offset()) {
registers_.active[transfer.base()] = address;
} else {
registers_.active[transfer.base()] = final_address;
}
}
}
if(adopt_user_mode) { if(adopt_user_mode) {
registers_.set_mode(original_mode); registers_.set_mode(original_mode);
} }
if(!visits_succeeded) { // Finally throw an exception if necessary.
if(address_error) {
registers_.exception<Registers::Exception::Address>();
} else if(!accesses_succeeded) {
registers_.exception<Registers::Exception::DataAbort>(); registers_.exception<Registers::Exception::DataAbort>();
} }
} }