1
0
mirror of https://github.com/TomHarte/CLK.git synced 2025-01-11 08:30:55 +00:00

Attempts properly to honour the bus-op and microcycle contract.

This commit is contained in:
Thomas Harte 2019-03-16 22:36:09 -04:00
parent d0c5cf0d2d
commit 937b3ca81d
3 changed files with 80 additions and 65 deletions

View File

@ -9,12 +9,49 @@
template <class T, bool dtack_is_implicit> void Processor<T, dtack_is_implicit>::run_for(HalfCycles duration) {
// TODO: obey the 'cycles' count.
while(true) {
// Check whether the current list of bus steps is exhausted; if so then
// seek out another one from the current program (if any), and if there
// are no more to do, revert to scheduling something else (after checking
// for interrupts).
if(active_step_->action == BusStep::Action::ScheduleNextProgram) {
if(active_micro_op_) {
/*
PERFORM THE CURRENT BUS STEP'S MICROCYCLE.
*/
// Check for DTack if this isn't being treated implicitly.
if(!dtack_is_implicit) {
if(active_step_->microcycle.data_select_active() && !dtack_) {
// TODO: perform wait state.
continue;
}
}
// TODO: synchronous bus.
// Perform the microcycle.
bus_handler_.perform_bus_operation(active_step_->microcycle, is_supervisor_);
/*
PERFORM THE BUS STEP'S ACTION.
*/
// Consider advancing a micro-operation.
if(active_step_->is_terminal()) {
// If there are any more micro-operations available, just move onwards.
if(active_micro_op_ && !active_micro_op_->is_terminal()) {
++active_micro_op_;
} else {
// Either the micro-operations for this instruction have been exhausted, or
// no instruction was ongoing. Either way, do a standard instruction operation.
// TODO: unless an interrupt is pending, or the trap flag is set.
const uint16_t next_instruction = prefetch_queue_[0].full;
if(!instructions[next_instruction].micro_operations) {
std::cerr << "68000 Abilities exhausted; should schedule an instruction or something?" << std::endl;
return;
}
active_program_ = &instructions[next_instruction];
active_micro_op_ = active_program_->micro_operations;
}
// There is now a micro operation; cue up the first step and perform the predecessor action.
active_step_ = active_micro_op_->bus_program;
switch(active_micro_op_->action) {
case MicroOp::Action::None: break;
@ -98,59 +135,26 @@ template <class T, bool dtack_is_implicit> void Processor<T, dtack_is_implicit>:
active_program_->destination->full -= 4;
break;
}
}
if(active_micro_op_) {
++active_micro_op_;
active_step_ = active_micro_op_->bus_program;
}
} else {
switch(active_step_->action) {
default:
std::cerr << "Unimplemented 68000 bus step action: " << int(active_step_->action) << std::endl;
return;
break;
if(!active_step_ || !active_micro_op_) {
const uint16_t next_instruction = prefetch_queue_[0].full;
if(!instructions[next_instruction].micro_operations) {
std::cerr << "68000 Abilities exhausted; should schedule an instruction or something?" << std::endl;
return;
case BusStep::Action::None: break;
case BusStep::Action::IncrementEffectiveAddress: effective_address_ += 2; break;
case BusStep::Action::IncrementProgramCounter: program_counter_.full += 2; break;
case BusStep::Action::AdvancePrefetch:
prefetch_queue_[0] = prefetch_queue_[1];
break;
}
active_program_ = &instructions[next_instruction];
active_micro_op_ = active_program_->micro_operations;
active_step_ = active_micro_op_->bus_program;
// Move to the next bus step.
++ active_step_;
}
}
// The bus step list is not exhausted, so perform the microcycle.
// Check for DTack if this isn't being treated implicitly.
if(!dtack_is_implicit) {
if(active_step_->microcycle.data_select_active() && !dtack_) {
// TODO: perform wait state.
continue;
}
}
// TODO: synchronous bus.
// Perform the microcycle.
bus_handler_.perform_bus_operation(active_step_->microcycle, is_supervisor_);
// Perform the post-hoc action.
switch(active_step_->action) {
default:
std::cerr << "Unimplemented 68000 bus step action: " << int(active_step_->action) << std::endl;
return;
break;
case BusStep::Action::None: break;
case BusStep::Action::IncrementEffectiveAddress: effective_address_ += 2; break;
case BusStep::Action::IncrementProgramCounter: program_counter_.full += 2; break;
case BusStep::Action::AdvancePrefetch:
prefetch_queue_[0] = prefetch_queue_[1];
break;
}
// Move to the next program step.
++active_step_;
}
}

View File

@ -260,9 +260,7 @@ struct ProcessorStorageConstructor {
for(size_t instruction = 0; instruction < 65536; ++instruction) {
for(const auto &mapping: mappings) {
if((instruction & mapping.mask) == mapping.value) {
// Install the operation and make a note of where micro-ops begin.
storage_.instructions[instruction].operation = mapping.operation;
micro_op_pointers[instruction] = storage_.all_micro_ops_.size();
const auto micro_op_start = storage_.all_micro_ops_.size();
switch(mapping.decoder) {
case Decoder::Decimal: {
@ -288,14 +286,15 @@ struct ProcessorStorageConstructor {
}
} break;
case Decoder::RegOpModeReg: {
} break;
default:
std::cerr << "Unhandled decoder " << int(mapping.decoder) << std::endl;
break;
continue;
}
// Install the operation and make a note of where micro-ops begin.
storage_.instructions[instruction].operation = mapping.operation;
micro_op_pointers[instruction] = micro_op_start;
// Don't search further through the list of possibilities.
break;
}
@ -309,7 +308,9 @@ struct ProcessorStorageConstructor {
auto operation = storage_.instructions[instruction].micro_operations;
while(!operation->is_terminal()) {
operation->bus_program = storage_.all_bus_steps_.data() + (operation->bus_program - &arbitrary_base);
const auto offset = size_t(operation->bus_program - &arbitrary_base);
assert(offset >= 0 && offset < storage_.all_bus_steps_.size());
operation->bus_program = &storage_.all_bus_steps_[offset];
++operation;
}
}

View File

@ -45,6 +45,7 @@ class ProcessorStorage {
/*!
Bus steps are sequences of things to communicate to the bus.
Standard behaviour is: (i) perform microcycle; (ii) perform action.
*/
struct BusStep {
Microcycle microcycle;
@ -69,17 +70,26 @@ class ProcessorStorage {
} action = Action::None;
bool operator ==(const BusStep &rhs) const {
inline bool operator ==(const BusStep &rhs) const {
if(action != rhs.action) return false;
return microcycle == rhs.microcycle;
}
inline bool is_terminal() const {
return action == Action::ScheduleNextProgram;
}
};
/*!
A micro-op is: (i) an action to take; and (ii) a sequence of bus operations
to perform after taking the action.
A nullptr bus_program terminates a sequence of micro operations.
NOTE: this therefore has the opposite order of behaviour compared to a BusStep,
the action occurs BEFORE the bus operations, not after.
A nullptr bus_program terminates a sequence of micro operations; the is_terminal
test should be used to query for that. The action on the final operation will
be performed.
*/
struct MicroOp {
enum class Action {