mirror of
https://github.com/TomHarte/CLK.git
synced 2025-01-26 15:32:04 +00:00
Thanks to a hint from the MAME guys: finally completes Macintosh 128kb and 512kb emulation (!)
This commit is contained in:
parent
3d2490b774
commit
9781460c41
@ -19,6 +19,19 @@ Analyser::Static::TargetList Analyser::Static::Macintosh::GetTargets(const Media
|
||||
using Target = Analyser::Static::Macintosh::Target;
|
||||
auto *const target = new Target;
|
||||
target->media = media;
|
||||
|
||||
// If this is a single-sided floppy disk, guess the Macintosh 512kb.
|
||||
if(media.mass_storage_devices.empty()) {
|
||||
bool has_800kb_disks = false;
|
||||
for(const auto &disk: media.disks) {
|
||||
has_800kb_disks |= disk->get_head_count() > 1;
|
||||
}
|
||||
|
||||
if(!has_800kb_disks) {
|
||||
target->model = Target::Model::Mac512k;
|
||||
}
|
||||
}
|
||||
|
||||
targets.push_back(std::unique_ptr<Analyser::Static::Target>(target));
|
||||
|
||||
return targets;
|
||||
|
@ -8,6 +8,36 @@
|
||||
|
||||
#include "DriveSpeedAccumulator.hpp"
|
||||
|
||||
namespace {
|
||||
|
||||
/*
|
||||
For knowledge encapsulate below, all credit goes to the MAME team. No original research here.
|
||||
|
||||
Per their investigation, the bytes collected for PWM output feed a 6-bit LFSR, which then keeps
|
||||
output high until it eventually reaches a state of 0x20. The LFSR shifts rightward and taps bits
|
||||
0 and 1 as the new input into bit 5.
|
||||
|
||||
I've therefore implemented the LFSR as below, feeding into a lookup table to calculate actual
|
||||
pulse widths from the values stored into the PWM buffer.
|
||||
*/
|
||||
template<uint8_t value> constexpr uint8_t lfsr() {
|
||||
if constexpr (value == 0x20 || !value) return 0;
|
||||
return 1+lfsr<(((value ^ (value >> 1))&1) << 5) | (value >> 1)>();
|
||||
}
|
||||
|
||||
constexpr uint8_t pwm_lookup[] = {
|
||||
lfsr<0>(), lfsr<1>(), lfsr<2>(), lfsr<3>(), lfsr<4>(), lfsr<5>(), lfsr<6>(), lfsr<7>(),
|
||||
lfsr<8>(), lfsr<9>(), lfsr<10>(), lfsr<11>(), lfsr<12>(), lfsr<13>(), lfsr<14>(), lfsr<15>(),
|
||||
lfsr<16>(), lfsr<17>(), lfsr<18>(), lfsr<19>(), lfsr<20>(), lfsr<21>(), lfsr<22>(), lfsr<23>(),
|
||||
lfsr<24>(), lfsr<25>(), lfsr<26>(), lfsr<27>(), lfsr<28>(), lfsr<29>(), lfsr<30>(), lfsr<31>(),
|
||||
lfsr<32>(), lfsr<33>(), lfsr<34>(), lfsr<35>(), lfsr<36>(), lfsr<37>(), lfsr<38>(), lfsr<39>(),
|
||||
lfsr<40>(), lfsr<41>(), lfsr<42>(), lfsr<43>(), lfsr<44>(), lfsr<45>(), lfsr<46>(), lfsr<47>(),
|
||||
lfsr<48>(), lfsr<49>(), lfsr<50>(), lfsr<51>(), lfsr<52>(), lfsr<53>(), lfsr<54>(), lfsr<55>(),
|
||||
lfsr<56>(), lfsr<57>(), lfsr<58>(), lfsr<59>(), lfsr<60>(), lfsr<61>(), lfsr<62>(), lfsr<63>(),
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
using namespace Apple::Macintosh;
|
||||
|
||||
void DriveSpeedAccumulator::post_sample(uint8_t sample) {
|
||||
@ -17,40 +47,33 @@ void DriveSpeedAccumulator::post_sample(uint8_t sample) {
|
||||
// the samples until there is a certain small quantity of them,
|
||||
// then produce a new estimate of rotation speed and start the
|
||||
// buffer afresh.
|
||||
samples_[sample_pointer_] = sample;
|
||||
++sample_pointer_;
|
||||
|
||||
if(sample_pointer_ == samples_.size()) {
|
||||
sample_pointer_ = 0;
|
||||
//
|
||||
// Note the table lookup here; see text above.
|
||||
sample_total_ += pwm_lookup[sample & 0x3f];
|
||||
++sample_count_;
|
||||
|
||||
if(sample_count_ == samples_per_bucket) {
|
||||
// The below fits for a function like `a + bc`; it encapsultes the following
|
||||
// beliefs:
|
||||
//
|
||||
// (i) motor speed is proportional to voltage supplied;
|
||||
// (ii) with pulse-width modulation it's therefore proportional to the duty cycle;
|
||||
// (iii) the Mac pulse-width modulates whatever it reads from the disk speed buffer;
|
||||
// (iii) the Mac pulse-width modulates whatever it reads from the disk speed buffer, as per the LFSR rules above;
|
||||
// (iv) ... subject to software pulse-width modulation of that pulse-width modulation.
|
||||
//
|
||||
// So, I believe current motor speed is proportional to a low-pass filtering of
|
||||
// the speed buffer. Which I've implemented very coarsely via 'large' bucketed-averages,
|
||||
// noting also that exact disk motor speed is always a little approximate.
|
||||
|
||||
// Sum all samples.
|
||||
// TODO: if the above is the correct test, do it on sample receipt rather than
|
||||
// bothering with an intermediate buffer.
|
||||
int sum = 0;
|
||||
for(auto s: samples_) {
|
||||
sum += s;
|
||||
}
|
||||
|
||||
// The formula below was derived from observing values the Mac wrote into its
|
||||
// disk-speed buffer. Given that it runs a calibration loop before doing so,
|
||||
// I cannot guarantee the accuracy of these numbers beyond being within the
|
||||
// range that the computer would accept.
|
||||
const float normalised_sum = float(sum) / float(samples_.size());
|
||||
const float rotation_speed = (normalised_sum * 27.08f) - 259.0f;
|
||||
const float normalised_sum = float(sample_total_) / float(samples_per_bucket);
|
||||
const float rotation_speed = (normalised_sum - 3.7f) * 17.6f;
|
||||
|
||||
delegate_->drive_speed_accumulator_set_drive_speed(this, rotation_speed);
|
||||
sample_count_ = 0;
|
||||
sample_total_ = 0;
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -34,8 +34,9 @@ class DriveSpeedAccumulator {
|
||||
}
|
||||
|
||||
private:
|
||||
std::array<uint8_t, 20> samples_;
|
||||
std::size_t sample_pointer_ = 0;
|
||||
static constexpr int samples_per_bucket = 20;
|
||||
int sample_count_ = 0;
|
||||
int sample_total_ = 0;
|
||||
Delegate *delegate_ = nullptr;
|
||||
};
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user