1
0
mirror of https://github.com/TomHarte/CLK.git synced 2024-06-26 10:29:31 +00:00

Manages to get a brilliant white out of the new pipeline.

This commit is contained in:
Thomas Harte 2018-11-23 22:54:52 -05:00
parent d4ac79b0af
commit a66a20f7fe
3 changed files with 18 additions and 20 deletions

View File

@ -28,11 +28,8 @@ constexpr GLenum SVideoLineBufferTextureUnit = GL_TEXTURE4;
/// The texture unit which contains line-by-line records of luminance and separated, demodulated chrominance.
constexpr GLenum RGBLineBufferTextureUnit = GL_TEXTURE5;
/// The texture unit which contains line-by-line RGB.
constexpr GLenum LineBufferTextureUnit = GL_TEXTURE6;
/// The texture unit that contains the current display.
constexpr GLenum AccumulationTextureUnit = GL_TEXTURE7;
constexpr GLenum AccumulationTextureUnit = GL_TEXTURE6;
#define TextureAddress(x, y) (((y) << 11) | (x))
#define TextureAddressGetY(v) uint16_t((v) >> 11)
@ -148,21 +145,10 @@ void ScanTarget::set_modals(Modals modals) {
glBindVertexArray(line_vertex_array_);
glBindBuffer(GL_ARRAY_BUFFER, line_buffer_name_);
enable_vertex_attributes(ShaderType::Line, *output_shader_);
set_uniforms(ShaderType::Line, *output_shader_);
output_shader_->set_uniform("origin", modals.visible_area.origin.x, modals.visible_area.origin.y);
output_shader_->set_uniform("size", modals.visible_area.size.width, modals.visible_area.size.height);
// Establish an input shader.
input_shader_ = input_shader(modals_.input_data_type, modals_.display_type);
glBindVertexArray(scan_vertex_array_);
glBindBuffer(GL_ARRAY_BUFFER, scan_buffer_name_);
enable_vertex_attributes(ShaderType::InputScan, *input_shader_);
set_uniforms(ShaderType::InputScan, *input_shader_);
input_shader_->set_uniform("textureName", GLint(SourceData1BppTextureUnit - GL_TEXTURE0));
// Establish such intermediary shaders as are required.
pipeline_stages_.clear();
if(modals_.display_type == DisplayType::CompositeColour) {
@ -173,16 +159,28 @@ void ScanTarget::set_modals(Modals modals) {
if(modals_.display_type == DisplayType::SVideo || modals_.display_type == DisplayType::CompositeColour) {
pipeline_stages_.emplace_back(
svideo_to_rgb_shader(modals_.colour_cycle_numerator, modals_.colour_cycle_denominator, processing_width_).release(),
RGBLineBufferTextureUnit);
(modals_.display_type == DisplayType::CompositeColour) ? RGBLineBufferTextureUnit : SVideoLineBufferTextureUnit);
}
// Establish an input shader.
input_shader_ = input_shader(modals_.input_data_type, modals_.display_type);
glBindVertexArray(scan_vertex_array_);
glBindBuffer(GL_ARRAY_BUFFER, scan_buffer_name_);
enable_vertex_attributes(ShaderType::InputScan, *input_shader_);
set_uniforms(ShaderType::InputScan, *input_shader_);
input_shader_->set_uniform("textureName", GLint(SourceData1BppTextureUnit - GL_TEXTURE0));
// Cascade the texture units in use as per the pipeline stages.
std::vector<Shader *> input_shaders = {input_shader_.get()};
GLint texture_unit = GLint(UnprocessedLineBufferTextureUnit - GL_TEXTURE0);
for(const auto &stage: pipeline_stages_) {
input_shaders.push_back(stage.shader.get());
stage.shader->set_uniform("textureName", texture_unit);
set_uniforms(ShaderType::ProcessedScan, *stage.shader);
enable_vertex_attributes(ShaderType::ProcessedScan, *stage.shader);
++texture_unit;
}
output_shader_->set_uniform("textureName", texture_unit);

View File

@ -89,7 +89,7 @@ std::string ScanTarget::glsl_default_vertex_shader(ShaderType type) {
"vec2 eyePosition = vec2(mix(startPoint.x, endPoint.x, lateral) * processingWidth, lineY + longitudinal) / vec2(scale.x, 2048.0);";
} else {
result +=
"vec2 eyePosition = vec2(mix(startDataX, endDataX, lateral) - 10.0 + lateral*20.0, dataY);"
"vec2 eyePosition = vec2(mix(startDataX, endDataX, lateral) - 10.0 + lateral*20.0, dataY + longitudinal);"
"textureCoordinates[0] = (eyePosition - vec2(5.0, 0.0)) / textureSize(textureName, 0);"
"textureCoordinates[1] = (eyePosition - vec2(4.0, 0.0)) / textureSize(textureName, 0);"
@ -284,7 +284,7 @@ std::unique_ptr<Shader> ScanTarget::input_shader(InputDataType input_data_type,
));
}
std::unique_ptr<Shader> ScanTarget::composite_to_svideo_shader(int colour_cycle_numerator, int colour_cycle_denominator, int processing_width) {
std::unique_ptr<Shader> ScanTarget::svideo_to_rgb_shader(int colour_cycle_numerator, int colour_cycle_denominator, int processing_width) {
/*
Composite to S-Video conversion is achieved by filtering the input signal to obtain luminance, and then subtracting that
from the original to get chrominance.
@ -312,7 +312,7 @@ std::unique_ptr<Shader> ScanTarget::composite_to_svideo_shader(int colour_cycle_
return shader;
}
std::unique_ptr<Shader> ScanTarget::svideo_to_rgb_shader(int colour_cycle_numerator, int colour_cycle_denominator, int processing_width) {
std::unique_ptr<Shader> ScanTarget::composite_to_svideo_shader(int colour_cycle_numerator, int colour_cycle_denominator, int processing_width) {
const float cycles_per_expanded_line = (float(colour_cycle_numerator) / float(colour_cycle_denominator)) / (float(processing_width) / float(LineBufferWidth));
const SignalProcessing::FIRFilter filter(11, float(LineBufferWidth), 0.0f, cycles_per_expanded_line * 0.5f);
const auto coefficients = filter.get_coefficients();

View File

@ -141,7 +141,7 @@ struct ScanTarget {
InputDataType input_data_type;
/// Describes the type of display that the data is being shown on.
DisplayType display_type = DisplayType::RGB;
DisplayType display_type = DisplayType::SVideo;
/// If being fed composite data, this defines the colour space in use.
ColourSpace composite_colour_space;