1
0
mirror of https://github.com/TomHarte/CLK.git synced 2024-11-26 08:49:37 +00:00

Merge pull request #1301 from TomHarte/MoreIIgsPaging

Normalise IIgs memory map interface.
This commit is contained in:
Thomas Harte 2024-01-03 14:04:14 -05:00 committed by GitHub
commit ad31c50dfd
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
7 changed files with 185 additions and 205 deletions

View File

@ -384,7 +384,7 @@ class ConcreteMachine:
// MARK: BusHandler.
uint64_t total = 0;
forceinline Cycles perform_bus_operation(const CPU::WDC65816::BusOperation operation, const uint32_t address, uint8_t *const value) {
const auto &region = MemoryMapRegion(memory_, address);
const auto &region = memory_.region(address);
static bool log = false;
bool is_1Mhz = false;
@ -945,7 +945,7 @@ class ConcreteMachine:
is_1Mhz = region.flags & MemoryMap::Region::Is1Mhz;
if(isReadOperation(operation)) {
MemoryMapRead(region, address, value);
*value = memory_.read(region, address);
} else {
// Shadowed writes also occur "at 1Mhz".
// TODO: this is probably an approximation. I'm assuming that there's the ability asynchronously to post
@ -954,7 +954,7 @@ class ConcreteMachine:
// get by adding periodic NOPs within their copy-to-shadow step.
//
// Maybe the interaction with 2.8Mhz refresh isn't as straightforward as I think?
const bool is_shadowed = IsShadowed(memory_, region, address);
const bool is_shadowed = memory_.is_shadowed(address);
is_1Mhz |= is_shadowed;
// Use a very broad test for flushing video: any write to $e0 or $e1, or any write that is shadowed.
@ -963,7 +963,7 @@ class ConcreteMachine:
video_.flush();
}
MemoryMapWrite(memory_, region, address, value);
memory_.write(region, address, *value);
}
}

View File

@ -248,13 +248,124 @@ class MemoryMap {
uint8_t speed_register_ = 0x00;
// MARK: - Memory banking.
#define assert_is_region(start, end) \
assert(region_map[start] == region_map[start-1]+1); \
assert(region_map[end-1] == region_map[start]); \
assert(region_map[end] == region_map[end-1]+1);
void assert_is_region(uint8_t start, uint8_t end) {
assert(region_map[start] == region_map[start-1]+1);
assert(region_map[end-1] == region_map[start]);
assert(region_map[end] == region_map[end-1]+1);
}
template <int type> void set_paging() {
// Establish whether main or auxiliary RAM
// is exposed in bank $00 for a bunch of regions.
if constexpr (type & PagingType::Main) {
const auto set = [&](std::size_t page, const auto &flags) {
auto &region = regions[region_map[page]];
region.read = flags.read ? &ram_base[0x01'0000] : ram_base;
region.write = flags.write ? &ram_base[0x01'0000] : ram_base;
};
const auto state = auxiliary_switches_.main_state();
// Base: $0200$03FF.
set(0x02, state.base);
assert_is_region(0x02, 0x04);
// Region $0400$07ff.
set(0x04, state.region_04_08);
assert_is_region(0x04, 0x08);
// Base: $0800$1FFF.
set(0x08, state.base);
assert_is_region(0x08, 0x20);
// Region $2000$3FFF.
set(0x20, state.region_20_40);
assert_is_region(0x20, 0x40);
// Base: $4000$BFFF.
set(0x40, state.base);
assert_is_region(0x40, 0xc0);
}
// Update whether base or auxiliary RAM is visible in: (i) the zero
// and stack pages; and (ii) anywhere that the language card is exposing RAM instead of ROM.
if constexpr (bool(type & PagingType::ZeroPage)) {
// Affects bank $00 only, and should be a single region.
auto &region = regions[region_map[0]];
region.read = region.write = auxiliary_switches_.zero_state() ? &ram_base[0x01'0000] : ram_base;
assert(region_map[0x0000] == region_map[0x0001]);
assert(region_map[0x0001]+1 == region_map[0x0002]);
}
// Establish whether ROM or card switches are exposed in the distinct
// regions C100C2FF, C300C3FF, C400C7FF and C800CFFF.
//
// On the IIgs it intersects with the current shadow register.
if constexpr (bool(type & (PagingType::CardArea | PagingType::Main))) {
const bool inhibit_banks0001 = shadow_register_ & 0x40;
const auto state = auxiliary_switches_.card_state();
auto apply = [&state, this](uint32_t bank_base) {
auto &c0_region = regions[region_map[bank_base | 0xc0]];
auto &c1_region = regions[region_map[bank_base | 0xc1]];
auto &c3_region = regions[region_map[bank_base | 0xc3]];
auto &c4_region = regions[region_map[bank_base | 0xc4]];
auto &c8_region = regions[region_map[bank_base | 0xc8]];
const uint8_t *const rom = &regions[region_map[0xffd0]].read[0xffc100] - ((bank_base << 8) + 0xc100);
// This is applied dynamically as it may be added or lost in banks $00 and $01.
c0_region.flags |= Region::IsIO;
const auto apply_region = [&](bool flag, auto &region) {
region.write = nullptr;
if(flag) {
region.read = rom;
region.flags &= ~Region::IsIO;
} else {
region.flags |= Region::IsIO;
}
};
apply_region(state.region_C1_C3, c1_region);
apply_region(state.region_C3, c3_region);
apply_region(state.region_C4_C8, c4_region);
apply_region(state.region_C8_D0, c8_region);
// Sanity checks.
assert(region_map[bank_base | 0xc1] == region_map[bank_base | 0xc0]+1);
assert(region_map[bank_base | 0xc2] == region_map[bank_base | 0xc1]);
assert(region_map[bank_base | 0xc3] == region_map[bank_base | 0xc2]+1);
assert(region_map[bank_base | 0xc4] == region_map[bank_base | 0xc3]+1);
assert(region_map[bank_base | 0xc7] == region_map[bank_base | 0xc4]);
assert(region_map[bank_base | 0xc8] == region_map[bank_base | 0xc7]+1);
assert(region_map[bank_base | 0xcf] == region_map[bank_base | 0xc8]);
assert(region_map[bank_base | 0xd0] == region_map[bank_base | 0xcf]+1);
};
if(inhibit_banks0001) {
// Set no IO in the Cx00 range for banks $00 and $01, just
// regular RAM (or possibly auxiliary).
const auto auxiliary_state = auxiliary_switches_.main_state();
for(uint8_t region = region_map[0x00c0]; region < region_map[0x00d0]; region++) {
regions[region].read = auxiliary_state.base.read ? &ram_base[0x01'0000] : ram_base;
regions[region].write = auxiliary_state.base.write ? &ram_base[0x01'0000] : ram_base;
regions[region].flags &= ~Region::IsIO;
}
for(uint8_t region = region_map[0x01c0]; region < region_map[0x01d0]; region++) {
regions[region].read = regions[region].write = ram_base;
regions[region].flags &= ~Region::IsIO;
}
} else {
// Obey the card state for banks $00 and $01.
apply(0x0000);
apply(0x0100);
}
// Obey the card state for banks $e0 and $e1.
apply(0xe000);
apply(0xe100);
}
// Update the region from
// $D000 onwards as per the state of the language card flags — there may
// end up being ROM or RAM (or auxiliary RAM), and the first 4kb of it
@ -314,121 +425,6 @@ class MemoryMap {
apply(0xe000, e0_ram);
apply(0xe100, e0_ram);
}
// Establish whether main or auxiliary RAM
// is exposed in bank $00 for a bunch of regions.
if constexpr (type & PagingType::Main) {
const auto state = auxiliary_switches_.main_state();
#define set(page, flags) {\
auto &region = regions[region_map[page]]; \
region.read = flags.read ? &ram_base[0x01'0000] : ram_base; \
region.write = flags.write ? &ram_base[0x01'0000] : ram_base; \
}
// Base: $0200$03FF.
set(0x02, state.base);
assert_is_region(0x02, 0x04);
// Region $0400$07ff.
set(0x04, state.region_04_08);
assert_is_region(0x04, 0x08);
// Base: $0800$1FFF.
set(0x08, state.base);
assert_is_region(0x08, 0x20);
// Region $2000$3FFF.
set(0x20, state.region_20_40);
assert_is_region(0x20, 0x40);
// Base: $4000$BFFF.
set(0x40, state.base);
assert_is_region(0x40, 0xc0);
#undef set
}
// Update whether base or auxiliary RAM is visible in: (i) the zero
// and stack pages; and (ii) anywhere that the language card is exposing RAM instead of ROM.
if constexpr (bool(type & PagingType::ZeroPage)) {
// Affects bank $00 only, and should be a single region.
auto &region = regions[region_map[0]];
region.read = region.write = auxiliary_switches_.zero_state() ? &ram_base[0x01'0000] : ram_base;
assert(region_map[0x0000] == region_map[0x0001]);
assert(region_map[0x0001]+1 == region_map[0x0002]);
}
// Establish whether ROM or card switches are exposed in the distinct
// regions C100C2FF, C300C3FF, C400C7FF and C800CFFF.
//
// On the IIgs it intersects with the current shadow register.
if constexpr (bool(type & (PagingType::CardArea | PagingType::Main))) {
const bool inhibit_banks0001 = shadow_register_ & 0x40;
const auto state = auxiliary_switches_.card_state();
auto apply = [&state, this](uint32_t bank_base) {
auto &c0_region = regions[region_map[bank_base | 0xc0]];
auto &c1_region = regions[region_map[bank_base | 0xc1]];
auto &c3_region = regions[region_map[bank_base | 0xc3]];
auto &c4_region = regions[region_map[bank_base | 0xc4]];
auto &c8_region = regions[region_map[bank_base | 0xc8]];
const uint8_t *const rom = &regions[region_map[0xffd0]].read[0xffc100] - ((bank_base << 8) + 0xc100);
// This is applied dynamically as it may be added or lost in banks $00 and $01.
c0_region.flags |= Region::IsIO;
#define apply_region(flag, region) \
region.write = nullptr; \
if(flag) { \
region.read = rom; \
region.flags &= ~Region::IsIO; \
} else { \
region.flags |= Region::IsIO; \
}
apply_region(state.region_C1_C3, c1_region);
apply_region(state.region_C3, c3_region);
apply_region(state.region_C4_C8, c4_region);
apply_region(state.region_C8_D0, c8_region);
#undef apply_region
// Sanity checks.
assert(region_map[bank_base | 0xc1] == region_map[bank_base | 0xc0]+1);
assert(region_map[bank_base | 0xc2] == region_map[bank_base | 0xc1]);
assert(region_map[bank_base | 0xc3] == region_map[bank_base | 0xc2]+1);
assert(region_map[bank_base | 0xc4] == region_map[bank_base | 0xc3]+1);
assert(region_map[bank_base | 0xc7] == region_map[bank_base | 0xc4]);
assert(region_map[bank_base | 0xc8] == region_map[bank_base | 0xc7]+1);
assert(region_map[bank_base | 0xcf] == region_map[bank_base | 0xc8]);
assert(region_map[bank_base | 0xd0] == region_map[bank_base | 0xcf]+1);
};
if(inhibit_banks0001) {
// Set no IO in the Cx00 range for banks $00 and $01, just
// regular RAM (or possibly auxiliary).
const auto auxiliary_state = auxiliary_switches_.main_state();
for(uint8_t region = region_map[0x00c0]; region < region_map[0x00d0]; region++) {
regions[region].read = auxiliary_state.base.read ? &ram_base[0x01'0000] : ram_base;
regions[region].write = auxiliary_state.base.write ? &ram_base[0x01'0000] : ram_base;
regions[region].flags &= ~Region::IsIO;
}
for(uint8_t region = region_map[0x01c0]; region < region_map[0x01d0]; region++) {
regions[region].read = regions[region].write = ram_base;
regions[region].flags &= ~Region::IsIO;
}
} else {
// Obey the card state for banks $00 and $01.
apply(0x0000);
apply(0x0100);
}
// Obey the card state for banks $e0 and $e1.
apply(0xe000);
apply(0xe100);
}
}
// IIgs specific: sets or resets the ::IsShadowed flag across affected banks as
@ -563,8 +559,6 @@ class MemoryMap {
}
}
#undef assert_is_region
private:
// Various precomputed bitsets describing key regions; std::bitset doesn't support constexpr instantiation
// beyond the first 64 bits at the time of writing, alas, so these are generated at runtime.
@ -637,55 +631,49 @@ class MemoryMap {
std::array<Region, 40> regions; // An assert above ensures that this is large enough; there's no
// doctrinal reason for it to be whatever size it is now, just
// adjust as required.
// The below encapsulates an assumption that Apple intends to shadow physical addresses (i.e. after mapping).
// If the Apple shadows logical addresses (i.e. prior to mapping) then see commented out alternatives.
const Region &region(uint32_t address) { return regions[region_map[address >> 8]]; }
uint8_t read(const Region &region, uint32_t address) {
return region.read ? region.read[address] : 0xff;
}
bool is_shadowed(uint32_t address) const {
// Logical mapping alternative:
// shadow_pages[((&region.write[address] - ram_base) >> 10) & 127] & shadow_banks[address >> 17]
return shadow_pages[(address >> 10) & 127] & shadow_banks[address >> 17];
// Quick notes on contortions above:
//
// The objective is to support shadowing:
// 1. without storing a whole extra pointer, and such that the shadowing flags
// are orthogonal to the current auxiliary memory settings;
// 2. in such a way as to support shadowing both in banks $00/$01 and elsewhere; and
// 3. to do so without introducing too much in the way of branching.
//
// Hence the implemented solution: if shadowing is enabled then use the distance from the start of
// physical RAM modulo 128k indexed into the bank $e0/$e1 RAM.
//
// With a further twist: the modulo and pointer are indexed on ::IsShadowed to eliminate a branch
// even on that.
}
void write(const Region &region, uint32_t address, uint8_t value) {
if(!region.write) {
return;
}
region.write[address] = value;
const bool shadowed = is_shadowed(address);
shadow_base[shadowed][(&region.write[address] - ram_base) & shadow_mask[shadowed]] = value;
// Logical mapping alternative:
// shadow_base[shadowed][address & shadow_mask[shadowed]]
}
};
// TODO: branching below on region.read/write is predicated on the idea that extra scratch space
// would be less efficient. Verify that?
#define MemoryMapRegion(map, address) map.regions[map.region_map[address >> 8]]
#define MemoryMapRead(region, address, value) *value = region.read ? region.read[address] : 0xff
// The below encapsulates the fact that I've yet to determine whether Apple intends to
// indicate that logical addresses (i.e. those prior to being mapped per the current paging)
// or physical addresses (i.e. after mapping) are subject to shadowing.
#ifdef SHADOW_LOGICAL
#define IsShadowed(map, region, address) \
(map.shadow_pages[((&region.write[address] - map.ram_base) >> 10) & 127] & map.shadow_banks[address >> 17])
#define MemoryMapWrite(map, region, address, value) \
if(region.write) { \
region.write[address] = *value; \
const bool _mm_is_shadowed = IsShadowed(map, region, address); \
map.shadow_base[_mm_is_shadowed][address & map.shadow_mask[_mm_is_shadowed]] = *value; \
}
#else
#define IsShadowed(map, region, address) \
(map.shadow_pages[(address >> 10) & 127] & map.shadow_banks[address >> 17])
#define MemoryMapWrite(map, region, address, value) \
if(region.write) { \
region.write[address] = *value; \
const bool _mm_is_shadowed = IsShadowed(map, region, address); \
map.shadow_base[_mm_is_shadowed][(&region.write[address] - map.ram_base) & map.shadow_mask[_mm_is_shadowed]] = *value; \
}
#endif
// Quick notes on ::IsShadowed contortions:
//
// The objective is to support shadowing:
// 1. without storing a whole extra pointer, and such that the shadowing flags are orthogonal to the current auxiliary memory settings;
// 2. in such a way as to support shadowing both in banks $00/$01 and elsewhere; and
// 3. to do so without introducing too much in the way of branching.
//
// Hence the implemented solution: if shadowing is enabled then use the distance from the start of physical RAM
// modulo 128k indexed into the bank $e0/$e1 RAM.
//
// With a further twist: the modulo and pointer are indexed on ::IsShadowed to eliminate a branch even on that.
}
#endif /* MemoryMap_h */

View File

@ -535,7 +535,6 @@
4B8334861F5DA3780097E338 /* 6502Storage.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 4B8334851F5DA3780097E338 /* 6502Storage.cpp */; };
4B83348A1F5DB94B0097E338 /* IRQDelegatePortHandler.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 4B8334891F5DB94B0097E338 /* IRQDelegatePortHandler.cpp */; };
4B8334951F5E25B60097E338 /* C1540.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 4B8334941F5E25B60097E338 /* C1540.cpp */; };
4B85322D227793CB00F26553 /* etos192uk.trace.txt.gz in Resources */ = {isa = PBXBuildFile; fileRef = 4B85322C227793CA00F26553 /* etos192uk.trace.txt.gz */; };
4B85322F2277ABDE00F26553 /* tos100.trace.txt.gz in Resources */ = {isa = PBXBuildFile; fileRef = 4B85322E2277ABDD00F26553 /* tos100.trace.txt.gz */; };
4B86E25B1F8C628F006FAA45 /* Keyboard.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 4B86E2591F8C628F006FAA45 /* Keyboard.cpp */; };
4B8805F01DCFC99C003085B1 /* Acorn.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 4B8805EE1DCFC99C003085B1 /* Acorn.cpp */; };
@ -1622,7 +1621,6 @@
4B8334911F5E24FF0097E338 /* C1540Base.hpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.h; name = C1540Base.hpp; path = Implementation/C1540Base.hpp; sourceTree = "<group>"; };
4B8334941F5E25B60097E338 /* C1540.cpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.cpp; name = C1540.cpp; path = Implementation/C1540.cpp; sourceTree = "<group>"; };
4B85322922778E4200F26553 /* Comparative68000.hpp */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.cpp.h; path = Comparative68000.hpp; sourceTree = "<group>"; };
4B85322C227793CA00F26553 /* etos192uk.trace.txt.gz */ = {isa = PBXFileReference; lastKnownFileType = archive.gzip; path = etos192uk.trace.txt.gz; sourceTree = "<group>"; };
4B85322E2277ABDD00F26553 /* tos100.trace.txt.gz */ = {isa = PBXFileReference; lastKnownFileType = archive.gzip; path = tos100.trace.txt.gz; sourceTree = "<group>"; };
4B86E2591F8C628F006FAA45 /* Keyboard.cpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.cpp; path = Keyboard.cpp; sourceTree = "<group>"; };
4B86E25A1F8C628F006FAA45 /* Keyboard.hpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.h; path = Keyboard.hpp; sourceTree = "<group>"; };
@ -3540,7 +3538,6 @@
isa = PBXGroup;
children = (
4B85322E2277ABDD00F26553 /* tos100.trace.txt.gz */,
4B85322C227793CA00F26553 /* etos192uk.trace.txt.gz */,
);
path = "TOS Startup";
sourceTree = "<group>";
@ -5411,7 +5408,6 @@
4BB298FB1B587D8400A49093 /* ancb in Resources */,
4BB299431B587D8400A49093 /* dcma in Resources */,
4BB298FD1B587D8400A49093 /* andax in Resources */,
4B85322D227793CB00F26553 /* etos192uk.trace.txt.gz in Resources */,
4B8DF6262550D91600F3433C /* CPUEOR-trace_compare.log in Resources */,
4BB299401B587D8400A49093 /* cpya in Resources */,
4BB299BE1B587D8400A49093 /* rraix in Resources */,

View File

@ -36,7 +36,7 @@ class EmuTOS: public ComparativeBusHandler {
return m68000_.get_state();
}
template <typename Microcycle> perform_bus_operation(const Microcycle &cycle, int) {
template <typename Microcycle> HalfCycles perform_bus_operation(const Microcycle &cycle, int) {
const uint32_t address = cycle.word_address();
uint32_t word_address = address;
@ -56,7 +56,6 @@ class EmuTOS: public ComparativeBusHandler {
word_address %= ram_.size();
}
using Microcycle = CPU::MC68000::Microcycle;
if(cycle.data_select_active()) {
uint16_t peripheral_result = 0xffff;
if(is_peripheral) {
@ -68,20 +67,20 @@ class EmuTOS: public ComparativeBusHandler {
}
}
const auto operation = (op != Microcycle::DecodeDynamically) ? op : cycle.operation;
switch(operation & (Microcycle::SelectWord | Microcycle::SelectByte | Microcycle::Read)) {
using namespace CPU::MC68000;
switch(cycle.operation & (Operation::SelectWord | Operation::SelectByte | Operation::Read)) {
default: break;
case Microcycle::SelectWord | Microcycle::Read:
case Operation::SelectWord | Operation::Read:
cycle.value->w = is_peripheral ? peripheral_result : base[word_address];
break;
case Microcycle::SelectByte | Microcycle::Read:
case Operation::SelectByte | Operation::Read:
cycle.value->b = (is_peripheral ? peripheral_result : base[word_address]) >> cycle.byte_shift();
break;
case Microcycle::SelectWord:
case Operation::SelectWord:
base[word_address] = cycle.value->w;
break;
case Microcycle::SelectByte:
case Operation::SelectByte:
base[word_address] = (cycle.value->b << cycle.byte_shift()) | (base[word_address] & (0xffff ^ cycle.byte_mask()));
break;
}

View File

@ -38,16 +38,14 @@ namespace {
}
- (void)write:(uint8_t)value address:(uint32_t)address {
const auto &region = MemoryMapRegion(_memoryMap, address);
const auto &region = _memoryMap.region(address);
XCTAssertFalse(region.flags & MemoryMap::Region::IsIO);
MemoryMapWrite(_memoryMap, region, address, &value);
_memoryMap.write(region, address, value);
}
- (uint8_t)readAddress:(uint32_t)address {
const auto &region = MemoryMapRegion(_memoryMap, address);
uint8_t value;
MemoryMapRead(region, address, &value);
return value;
const auto &region = _memoryMap.region(address);
return _memoryMap.read(region, address);
}
- (void)testAllRAM {
@ -371,8 +369,7 @@ namespace {
while(logical < [next intValue]) {
[[maybe_unused]] const auto &region =
self->_memoryMap.regions[self->_memoryMap.region_map[logical]];
const bool isShadowed =
IsShadowed(_memoryMap, region, (logical << 8));
const bool isShadowed = _memoryMap.is_shadowed(logical << 8);
XCTAssertEqual(
isShadowed,

View File

@ -59,20 +59,21 @@ class QL: public ComparativeBusHandler {
if(cycle.data_select_active()) {
uint16_t peripheral_result = 0xffff;
switch(cycle.operation & (Microcycle::SelectWord | Microcycle::SelectByte | Microcycle::Read)) {
using namespace CPU::MC68000;
switch(cycle.operation & (Operation::SelectWord | Operation::SelectByte | Operation::Read)) {
default: break;
case Microcycle::SelectWord | Microcycle::Read:
case Operation::SelectWord | Operation::Read:
cycle.value->w = is_peripheral ? peripheral_result : base[word_address];
break;
case Microcycle::SelectByte | Microcycle::Read:
case Operation::SelectByte | Operation::Read:
cycle.value->b = (is_peripheral ? peripheral_result : base[word_address]) >> cycle.byte_shift();
break;
case Microcycle::SelectWord:
case Operation::SelectWord:
assert(!(is_rom && !is_peripheral));
if(!is_peripheral) base[word_address] = cycle.value->w;
break;
case Microcycle::SelectByte:
case Operation::SelectByte:
assert(!(is_rom && !is_peripheral));
if(!is_peripheral) base[word_address] = (cycle.value->b << cycle.byte_shift()) | (base[word_address] & (0xffff ^ cycle.byte_mask()));
break;

View File

@ -82,24 +82,23 @@ class RAM68000: public CPU::MC68000::BusHandler {
const uint32_t word_address = cycle.word_address();
duration_ += cycle.length;
const auto operation = (op != Microcycle::DecodeDynamically) ? op : cycle.operation;
if(cycle.data_select_active()) {
if(operation & Microcycle::InterruptAcknowledge) {
if(cycle.operation & CPU::MC68000::Operation::InterruptAcknowledge) {
cycle.value->b = 10;
} else {
switch(operation & (Microcycle::SelectWord | Microcycle::SelectByte | Microcycle::Read)) {
switch(cycle.operation & (CPU::MC68000::Operation::SelectWord | CPU::MC68000::Operation::SelectByte | CPU::MC68000::Operation::Read)) {
default: break;
case Microcycle::SelectWord | Microcycle::Read:
case CPU::MC68000::Operation::SelectWord | CPU::MC68000::Operation::Read:
cycle.value->w = ram_[word_address % ram_.size()];
break;
case Microcycle::SelectByte | Microcycle::Read:
case CPU::MC68000::Operation::SelectByte | CPU::MC68000::Operation::Read:
cycle.value->b = ram_[word_address % ram_.size()] >> cycle.byte_shift();
break;
case Microcycle::SelectWord:
case CPU::MC68000::Operation::SelectWord:
ram_[word_address % ram_.size()] = cycle.value->w;
break;
case Microcycle::SelectByte:
case CPU::MC68000::Operation::SelectByte:
ram_[word_address % ram_.size()] = uint16_t(
(cycle.value->b << cycle.byte_shift()) |
(ram_[word_address % ram_.size()] & cycle.untouched_byte_mask())