1
0
mirror of https://github.com/TomHarte/CLK.git synced 2025-02-26 08:29:33 +00:00

Hack in enough that disk contents end up in RAM.

This commit is contained in:
Thomas Harte 2023-12-01 09:34:31 -05:00
parent 5feac8ef14
commit d101483714
6 changed files with 383 additions and 261 deletions

View File

@ -127,6 +127,37 @@ class i8237 {
return result; return result;
} }
//
// Interface for reading/writing via DMA.
//
static constexpr auto NotAvailable = uint32_t(~0);
/// Provides the next target address for @c channel if performing either a write (if @c is_write is @c true) or read (otherwise).
///
/// @returns Either a 16-bit address or @c NotAvailable if the requested channel isn't set up to perform a read or write at present.
uint32_t access(size_t channel, bool is_write) {
if(channels_[channel].transfer_complete) {
return NotAvailable;
}
if(is_write && channels_[channel].transfer != Channel::Transfer::Write) {
return NotAvailable;
}
if(!is_write && channels_[channel].transfer != Channel::Transfer::Read) {
return NotAvailable;
}
const auto address = channels_[channel].address.full;
channels_[channel].address.full += channels_[channel].address_decrement ? -1 : 1;
--channels_[channel].count.full;
channels_[channel].transfer_complete = (channels_[channel].count.full == 0xffff);
if(channels_[channel].transfer_complete) {
// TODO: _something_ with mode.
}
return address;
}
private: private:
// Low/high byte latch. // Low/high byte latch.
bool next_access_low_ = true; bool next_access_low_ = true;
@ -173,7 +204,7 @@ class DMAPages {
return pages_[page_for_index(index)]; return pages_[page_for_index(index)];
} }
uint8_t channel_page(int channel) { uint8_t channel_page(size_t channel) {
return pages_[channel]; return pages_[channel];
} }

View File

@ -0,0 +1,177 @@
//
// Memory.hpp
// Clock Signal
//
// Created by Thomas Harte on 01/12/2023.
// Copyright © 2023 Thomas Harte. All rights reserved.
//
#ifndef Memory_hpp
#define Memory_hpp
#include "Registers.hpp"
#include "Segments.hpp"
#include "../../InstructionSets/x86/AccessType.hpp"
namespace PCCompatible {
// TODO: send writes to the ROM area off to nowhere.
struct Memory {
public:
using AccessType = InstructionSet::x86::AccessType;
// Constructor.
Memory(Registers &registers, const Segments &segments) : registers_(registers), segments_(segments) {}
//
// Preauthorisation call-ins. Since only an 8088 is currently modelled, all accesses are implicitly authorised.
//
void preauthorise_stack_write([[maybe_unused]] uint32_t length) {}
void preauthorise_stack_read([[maybe_unused]] uint32_t length) {}
void preauthorise_read([[maybe_unused]] InstructionSet::x86::Source segment, [[maybe_unused]] uint16_t start, [[maybe_unused]] uint32_t length) {}
void preauthorise_read([[maybe_unused]] uint32_t start, [[maybe_unused]] uint32_t length) {}
//
// Access call-ins.
//
// Accesses an address based on segment:offset.
template <typename IntT, AccessType type>
typename InstructionSet::x86::Accessor<IntT, type>::type access(InstructionSet::x86::Source segment, uint16_t offset) {
const uint32_t physical_address = address(segment, offset);
if constexpr (std::is_same_v<IntT, uint16_t>) {
// If this is a 16-bit access that runs past the end of the segment, it'll wrap back
// to the start. So the 16-bit value will need to be a local cache.
if(offset == 0xffff) {
return split_word<type>(physical_address, address(segment, 0));
}
}
return access<IntT, type>(physical_address);
}
// Accesses an address based on physical location.
template <typename IntT, AccessType type>
typename InstructionSet::x86::Accessor<IntT, type>::type access(uint32_t address) {
// Dispense with the single-byte case trivially.
if constexpr (std::is_same_v<IntT, uint8_t>) {
return memory[address];
} else if(address != 0xf'ffff) {
return *reinterpret_cast<IntT *>(&memory[address]);
} else {
return split_word<type>(address, 0);
}
}
template <typename IntT>
void write_back() {
if constexpr (std::is_same_v<IntT, uint16_t>) {
if(write_back_address_[0] != NoWriteBack) {
memory[write_back_address_[0]] = write_back_value_ & 0xff;
memory[write_back_address_[1]] = write_back_value_ >> 8;
write_back_address_[0] = 0;
}
}
}
//
// Direct write.
//
template <typename IntT>
void preauthorised_write(InstructionSet::x86::Source segment, uint16_t offset, IntT value) {
// Bytes can be written without further ado.
if constexpr (std::is_same_v<IntT, uint8_t>) {
memory[address(segment, offset) & 0xf'ffff] = value;
return;
}
// Words that straddle the segment end must be split in two.
if(offset == 0xffff) {
memory[address(segment, offset) & 0xf'ffff] = value & 0xff;
memory[address(segment, 0x0000) & 0xf'ffff] = value >> 8;
return;
}
const uint32_t target = address(segment, offset) & 0xf'ffff;
// Words that straddle the end of physical RAM must also be split in two.
if(target == 0xf'ffff) {
memory[0xf'ffff] = value & 0xff;
memory[0x0'0000] = value >> 8;
return;
}
// It's safe just to write then.
*reinterpret_cast<uint16_t *>(&memory[target]) = value;
}
//
// Helper for instruction fetch.
//
std::pair<const uint8_t *, size_t> next_code() {
const uint32_t start = segments_.cs_base_ + registers_.ip();
return std::make_pair(&memory[start], 0x10'000 - start);
}
std::pair<const uint8_t *, size_t> all() {
return std::make_pair(memory.data(), 0x10'000);
}
//
// External access.
//
void install(size_t address, const uint8_t *data, size_t length) {
std::copy(data, data + length, memory.begin() + std::vector<uint8_t>::difference_type(address));
}
uint8_t *at(uint32_t address) {
return &memory[address];
}
private:
std::array<uint8_t, 1024*1024> memory{0xff};
Registers &registers_;
const Segments &segments_;
uint32_t segment_base(InstructionSet::x86::Source segment) {
using Source = InstructionSet::x86::Source;
switch(segment) {
default: return segments_.ds_base_;
case Source::ES: return segments_.es_base_;
case Source::CS: return segments_.cs_base_;
case Source::SS: return segments_.ss_base_;
}
}
uint32_t address(InstructionSet::x86::Source segment, uint16_t offset) {
return (segment_base(segment) + offset) & 0xf'ffff;
}
template <AccessType type>
typename InstructionSet::x86::Accessor<uint16_t, type>::type
split_word(uint32_t low_address, uint32_t high_address) {
if constexpr (is_writeable(type)) {
write_back_address_[0] = low_address;
write_back_address_[1] = high_address;
// Prepopulate only if this is a modify.
if constexpr (type == AccessType::ReadModifyWrite) {
write_back_value_ = uint16_t(memory[write_back_address_[0]] | (memory[write_back_address_[1]] << 8));
}
return write_back_value_;
} else {
return uint16_t(memory[low_address] | (memory[high_address] << 8));
}
}
static constexpr uint32_t NoWriteBack = 0; // A low byte address of 0 can't require write-back.
uint32_t write_back_address_[2] = {NoWriteBack, NoWriteBack};
uint16_t write_back_value_;
};
}
#endif /* Memory_hpp */

View File

@ -12,6 +12,7 @@
#include "PIC.hpp" #include "PIC.hpp"
#include "PIT.hpp" #include "PIT.hpp"
#include "DMA.hpp" #include "DMA.hpp"
#include "Memory.hpp"
#include "../../InstructionSets/x86/Decoder.hpp" #include "../../InstructionSets/x86/Decoder.hpp"
#include "../../InstructionSets/x86/Flags.hpp" #include "../../InstructionSets/x86/Flags.hpp"
@ -45,11 +46,6 @@
namespace PCCompatible { namespace PCCompatible {
//bool log = false;
//std::string previous;
struct Memory;
class DMA { class DMA {
public: public:
i8237 controller; i8237 controller;
@ -60,6 +56,19 @@ class DMA {
memory_ = memory; memory_ = memory;
} }
// TODO: this permits only 8-bit DMA. Fix that.
bool write(size_t channel, uint8_t value) {
auto address = controller.access(channel, true);
if(address == i8237::NotAvailable) {
return false;
}
address |= uint32_t(pages.channel_page(channel) << 16);
*memory_->at(address) = value;
return true;
}
private: private:
Memory *memory_; Memory *memory_;
}; };
@ -127,6 +136,7 @@ class FloppyController {
// Search for a matching sector. // Search for a matching sector.
const auto target = decoder_.geometry(); const auto target = decoder_.geometry();
bool found_sector = false;
for(auto &pair: drives_[decoder_.target().drive].cached_track) { for(auto &pair: drives_[decoder_.target().drive].cached_track) {
if( if(
(pair.second.address.track == target.cylinder) && (pair.second.address.track == target.cylinder) &&
@ -134,9 +144,27 @@ class FloppyController {
(pair.second.address.side == target.head) && (pair.second.address.side == target.head) &&
(pair.second.size == target.size) (pair.second.size == target.size)
) { ) {
// `printf(""); found_sector = true;
bool wrote_in_full = true;
for(int c = 0; c < 128 << target.size; c++) {
if(!dma_.write(2, pair.second.samples[0].data()[c])) {
wrote_in_full = false;
break;
}
}
if(wrote_in_full) {
} else {
}
break;
} }
} }
if(!found_sector) {
}
} break; } break;
case Command::Seek: case Command::Seek:
@ -682,257 +710,6 @@ class i8255PortHandler : public Intel::i8255::PortHandler {
}; };
using PPI = Intel::i8255::i8255<i8255PortHandler>; using PPI = Intel::i8255::i8255<i8255PortHandler>;
struct Registers {
public:
static constexpr bool is_32bit = false;
uint8_t &al() { return ax_.halves.low; }
uint8_t &ah() { return ax_.halves.high; }
uint16_t &ax() { return ax_.full; }
CPU::RegisterPair16 &axp() { return ax_; }
uint8_t &cl() { return cx_.halves.low; }
uint8_t &ch() { return cx_.halves.high; }
uint16_t &cx() { return cx_.full; }
uint8_t &dl() { return dx_.halves.low; }
uint8_t &dh() { return dx_.halves.high; }
uint16_t &dx() { return dx_.full; }
uint8_t &bl() { return bx_.halves.low; }
uint8_t &bh() { return bx_.halves.high; }
uint16_t &bx() { return bx_.full; }
uint16_t &sp() { return sp_; }
uint16_t &bp() { return bp_; }
uint16_t &si() { return si_; }
uint16_t &di() { return di_; }
uint16_t &ip() { return ip_; }
uint16_t &es() { return es_; }
uint16_t &cs() { return cs_; }
uint16_t &ds() { return ds_; }
uint16_t &ss() { return ss_; }
uint16_t es() const { return es_; }
uint16_t cs() const { return cs_; }
uint16_t ds() const { return ds_; }
uint16_t ss() const { return ss_; }
void reset() {
cs_ = 0xffff;
ip_ = 0;
}
private:
CPU::RegisterPair16 ax_;
CPU::RegisterPair16 cx_;
CPU::RegisterPair16 dx_;
CPU::RegisterPair16 bx_;
uint16_t sp_;
uint16_t bp_;
uint16_t si_;
uint16_t di_;
uint16_t es_, cs_, ds_, ss_;
uint16_t ip_;
};
class Segments {
public:
Segments(const Registers &registers) : registers_(registers) {}
using Source = InstructionSet::x86::Source;
/// Posted by @c perform after any operation which *might* have affected a segment register.
void did_update(Source segment) {
switch(segment) {
default: break;
case Source::ES: es_base_ = uint32_t(registers_.es()) << 4; break;
case Source::CS: cs_base_ = uint32_t(registers_.cs()) << 4; break;
case Source::DS: ds_base_ = uint32_t(registers_.ds()) << 4; break;
case Source::SS: ss_base_ = uint32_t(registers_.ss()) << 4; break;
}
}
void reset() {
did_update(Source::ES);
did_update(Source::CS);
did_update(Source::DS);
did_update(Source::SS);
}
uint32_t es_base_, cs_base_, ds_base_, ss_base_;
bool operator ==(const Segments &rhs) const {
return
es_base_ == rhs.es_base_ &&
cs_base_ == rhs.cs_base_ &&
ds_base_ == rhs.ds_base_ &&
ss_base_ == rhs.ss_base_;
}
private:
const Registers &registers_;
};
// TODO: send writes to the ROM area off to nowhere.
struct Memory {
public:
using AccessType = InstructionSet::x86::AccessType;
// Constructor.
Memory(Registers &registers, const Segments &segments) : registers_(registers), segments_(segments) {}
//
// Preauthorisation call-ins. Since only an 8088 is currently modelled, all accesses are implicitly authorised.
//
void preauthorise_stack_write([[maybe_unused]] uint32_t length) {}
void preauthorise_stack_read([[maybe_unused]] uint32_t length) {}
void preauthorise_read([[maybe_unused]] InstructionSet::x86::Source segment, [[maybe_unused]] uint16_t start, [[maybe_unused]] uint32_t length) {}
void preauthorise_read([[maybe_unused]] uint32_t start, [[maybe_unused]] uint32_t length) {}
//
// Access call-ins.
//
// Accesses an address based on segment:offset.
template <typename IntT, AccessType type>
typename InstructionSet::x86::Accessor<IntT, type>::type access(InstructionSet::x86::Source segment, uint16_t offset) {
const uint32_t physical_address = address(segment, offset);
if constexpr (std::is_same_v<IntT, uint16_t>) {
// If this is a 16-bit access that runs past the end of the segment, it'll wrap back
// to the start. So the 16-bit value will need to be a local cache.
if(offset == 0xffff) {
return split_word<type>(physical_address, address(segment, 0));
}
}
return access<IntT, type>(physical_address);
}
// Accesses an address based on physical location.
template <typename IntT, AccessType type>
typename InstructionSet::x86::Accessor<IntT, type>::type access(uint32_t address) {
// Dispense with the single-byte case trivially.
if constexpr (std::is_same_v<IntT, uint8_t>) {
return memory[address];
} else if(address != 0xf'ffff) {
return *reinterpret_cast<IntT *>(&memory[address]);
} else {
return split_word<type>(address, 0);
}
}
template <typename IntT>
void write_back() {
if constexpr (std::is_same_v<IntT, uint16_t>) {
if(write_back_address_[0] != NoWriteBack) {
memory[write_back_address_[0]] = write_back_value_ & 0xff;
memory[write_back_address_[1]] = write_back_value_ >> 8;
write_back_address_[0] = 0;
}
}
}
//
// Direct write.
//
template <typename IntT>
void preauthorised_write(InstructionSet::x86::Source segment, uint16_t offset, IntT value) {
// Bytes can be written without further ado.
if constexpr (std::is_same_v<IntT, uint8_t>) {
memory[address(segment, offset) & 0xf'ffff] = value;
return;
}
// Words that straddle the segment end must be split in two.
if(offset == 0xffff) {
memory[address(segment, offset) & 0xf'ffff] = value & 0xff;
memory[address(segment, 0x0000) & 0xf'ffff] = value >> 8;
return;
}
const uint32_t target = address(segment, offset) & 0xf'ffff;
// Words that straddle the end of physical RAM must also be split in two.
if(target == 0xf'ffff) {
memory[0xf'ffff] = value & 0xff;
memory[0x0'0000] = value >> 8;
return;
}
// It's safe just to write then.
*reinterpret_cast<uint16_t *>(&memory[target]) = value;
}
//
// Helper for instruction fetch.
//
std::pair<const uint8_t *, size_t> next_code() {
const uint32_t start = segments_.cs_base_ + registers_.ip();
return std::make_pair(&memory[start], 0x10'000 - start);
}
std::pair<const uint8_t *, size_t> all() {
return std::make_pair(memory.data(), 0x10'000);
}
//
// External access.
//
void install(size_t address, const uint8_t *data, size_t length) {
std::copy(data, data + length, memory.begin() + std::vector<uint8_t>::difference_type(address));
}
const uint8_t *at(uint32_t address) {
return &memory[address];
}
private:
std::array<uint8_t, 1024*1024> memory{0xff};
Registers &registers_;
const Segments &segments_;
uint32_t segment_base(InstructionSet::x86::Source segment) {
using Source = InstructionSet::x86::Source;
switch(segment) {
default: return segments_.ds_base_;
case Source::ES: return segments_.es_base_;
case Source::CS: return segments_.cs_base_;
case Source::SS: return segments_.ss_base_;
}
}
uint32_t address(InstructionSet::x86::Source segment, uint16_t offset) {
return (segment_base(segment) + offset) & 0xf'ffff;
}
template <AccessType type>
typename InstructionSet::x86::Accessor<uint16_t, type>::type
split_word(uint32_t low_address, uint32_t high_address) {
if constexpr (is_writeable(type)) {
write_back_address_[0] = low_address;
write_back_address_[1] = high_address;
// Prepopulate only if this is a modify.
if constexpr (type == AccessType::ReadModifyWrite) {
write_back_value_ = uint16_t(memory[write_back_address_[0]] | (memory[write_back_address_[1]] << 8));
}
return write_back_value_;
} else {
return uint16_t(memory[low_address] | (memory[high_address] << 8));
}
}
static constexpr uint32_t NoWriteBack = 0; // A low byte address of 0 can't require write-back.
uint32_t write_back_address_[2] = {NoWriteBack, NoWriteBack};
uint16_t write_back_value_;
};
class IO { class IO {
public: public:
IO(PIT &pit, DMA &dma, PPI &ppi, PIC &pic, MDA &mda, FloppyController &fdc) : IO(PIT &pit, DMA &dma, PPI &ppi, PIC &pic, MDA &mda, FloppyController &fdc) :

View File

@ -0,0 +1,73 @@
//
// Registers.hpp
// Clock Signal
//
// Created by Thomas Harte on 01/12/2023.
// Copyright © 2023 Thomas Harte. All rights reserved.
//
#ifndef Registers_hpp
#define Registers_hpp
namespace PCCompatible {
struct Registers {
public:
static constexpr bool is_32bit = false;
uint8_t &al() { return ax_.halves.low; }
uint8_t &ah() { return ax_.halves.high; }
uint16_t &ax() { return ax_.full; }
CPU::RegisterPair16 &axp() { return ax_; }
uint8_t &cl() { return cx_.halves.low; }
uint8_t &ch() { return cx_.halves.high; }
uint16_t &cx() { return cx_.full; }
uint8_t &dl() { return dx_.halves.low; }
uint8_t &dh() { return dx_.halves.high; }
uint16_t &dx() { return dx_.full; }
uint8_t &bl() { return bx_.halves.low; }
uint8_t &bh() { return bx_.halves.high; }
uint16_t &bx() { return bx_.full; }
uint16_t &sp() { return sp_; }
uint16_t &bp() { return bp_; }
uint16_t &si() { return si_; }
uint16_t &di() { return di_; }
uint16_t &ip() { return ip_; }
uint16_t &es() { return es_; }
uint16_t &cs() { return cs_; }
uint16_t &ds() { return ds_; }
uint16_t &ss() { return ss_; }
uint16_t es() const { return es_; }
uint16_t cs() const { return cs_; }
uint16_t ds() const { return ds_; }
uint16_t ss() const { return ss_; }
void reset() {
cs_ = 0xffff;
ip_ = 0;
}
private:
CPU::RegisterPair16 ax_;
CPU::RegisterPair16 cx_;
CPU::RegisterPair16 dx_;
CPU::RegisterPair16 bx_;
uint16_t sp_;
uint16_t bp_;
uint16_t si_;
uint16_t di_;
uint16_t es_, cs_, ds_, ss_;
uint16_t ip_;
};
}
#endif /* Registers_hpp */

View File

@ -0,0 +1,58 @@
//
// Segments.hpp
// Clock Signal
//
// Created by Thomas Harte on 01/12/2023.
// Copyright © 2023 Thomas Harte. All rights reserved.
//
#ifndef Segments_hpp
#define Segments_hpp
#include "Registers.hpp"
#include "../../InstructionSets/x86/Instruction.hpp"
namespace PCCompatible {
class Segments {
public:
Segments(const Registers &registers) : registers_(registers) {}
using Source = InstructionSet::x86::Source;
/// Posted by @c perform after any operation which *might* have affected a segment register.
void did_update(Source segment) {
switch(segment) {
default: break;
case Source::ES: es_base_ = uint32_t(registers_.es()) << 4; break;
case Source::CS: cs_base_ = uint32_t(registers_.cs()) << 4; break;
case Source::DS: ds_base_ = uint32_t(registers_.ds()) << 4; break;
case Source::SS: ss_base_ = uint32_t(registers_.ss()) << 4; break;
}
}
void reset() {
did_update(Source::ES);
did_update(Source::CS);
did_update(Source::DS);
did_update(Source::SS);
}
uint32_t es_base_, cs_base_, ds_base_, ss_base_;
bool operator ==(const Segments &rhs) const {
return
es_base_ == rhs.es_base_ &&
cs_base_ == rhs.cs_base_ &&
ds_base_ == rhs.ds_base_ &&
ss_base_ == rhs.ss_base_;
}
private:
const Registers &registers_;
};
}
#endif /* Segments_hpp */

View File

@ -1133,6 +1133,9 @@
4238200E2B17CBC800964EFE /* StaticAnalyser.hpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.h; path = StaticAnalyser.hpp; sourceTree = "<group>"; }; 4238200E2B17CBC800964EFE /* StaticAnalyser.hpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.h; path = StaticAnalyser.hpp; sourceTree = "<group>"; };
4238200F2B17CBC800964EFE /* Target.hpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.h; path = Target.hpp; sourceTree = "<group>"; }; 4238200F2B17CBC800964EFE /* Target.hpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.h; path = Target.hpp; sourceTree = "<group>"; };
423820102B17CBC800964EFE /* StaticAnalyser.cpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.cpp; path = StaticAnalyser.cpp; sourceTree = "<group>"; }; 423820102B17CBC800964EFE /* StaticAnalyser.cpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.cpp; path = StaticAnalyser.cpp; sourceTree = "<group>"; };
423820132B1A235200964EFE /* Memory.hpp */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.cpp.h; path = Memory.hpp; sourceTree = "<group>"; };
423820142B1A23C200964EFE /* Registers.hpp */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.cpp.h; path = Registers.hpp; sourceTree = "<group>"; };
423820152B1A23E100964EFE /* Segments.hpp */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.cpp.h; path = Segments.hpp; sourceTree = "<group>"; };
423BDC492AB24699008E37B6 /* 8088Tests.mm */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.objcpp; path = 8088Tests.mm; sourceTree = "<group>"; }; 423BDC492AB24699008E37B6 /* 8088Tests.mm */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.objcpp; path = 8088Tests.mm; sourceTree = "<group>"; };
42437B342ACF02A9006DFED1 /* Flags.hpp */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.cpp.h; path = Flags.hpp; sourceTree = "<group>"; }; 42437B342ACF02A9006DFED1 /* Flags.hpp */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.cpp.h; path = Flags.hpp; sourceTree = "<group>"; };
42437B352ACF0AA2006DFED1 /* Perform.hpp */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.cpp.h; path = Perform.hpp; sourceTree = "<group>"; }; 42437B352ACF0AA2006DFED1 /* Perform.hpp */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.cpp.h; path = Perform.hpp; sourceTree = "<group>"; };
@ -2383,11 +2386,14 @@
isa = PBXGroup; isa = PBXGroup;
children = ( children = (
425739372B051EA800B7D1E4 /* PCCompatible.cpp */, 425739372B051EA800B7D1E4 /* PCCompatible.cpp */,
425739362B051EA800B7D1E4 /* PCCompatible.hpp */,
4267A9C72B0C26FA008A59BB /* PIT.hpp */,
4267A9C82B0D4EC2008A59BB /* PIC.hpp */,
4267A9C92B0D4F17008A59BB /* DMA.hpp */, 4267A9C92B0D4F17008A59BB /* DMA.hpp */,
4267A9CA2B111ED2008A59BB /* KeyboardMapper.hpp */, 4267A9CA2B111ED2008A59BB /* KeyboardMapper.hpp */,
423820132B1A235200964EFE /* Memory.hpp */,
425739362B051EA800B7D1E4 /* PCCompatible.hpp */,
4267A9C82B0D4EC2008A59BB /* PIC.hpp */,
4267A9C72B0C26FA008A59BB /* PIT.hpp */,
423820142B1A23C200964EFE /* Registers.hpp */,
423820152B1A23E100964EFE /* Segments.hpp */,
); );
path = PCCompatible; path = PCCompatible;
sourceTree = "<group>"; sourceTree = "<group>";