1
0
mirror of https://github.com/TomHarte/CLK.git synced 2024-11-26 08:49:37 +00:00

Switch to matching fragments.

This commit is contained in:
Thomas Harte 2020-01-18 14:18:59 -05:00
parent d674fd0e67
commit d4be052e76

View File

@ -48,21 +48,73 @@ class TrackConstructor {
return uint32_t(128 << (address[3]&3));
}
struct Fragment {
int prior_syncs = 1;
std::vector<uint8_t> contents;
};
/// @returns The byte stream this sector address would produce if a WD read track command were to observe it.
std::vector<uint8_t> get_track_address_image() const {
return track_encoding(address.begin(), address.begin() + 4, {0xa1, 0xa1, 0xfe});
std::vector<Fragment> get_track_address_fragments() const {
return track_fragments(address.begin(), address.begin() + 4, {0xa1, 0xa1, 0xfe});
}
/// @returns The byte stream this sector data would produce if a WD read track command were to observe it.
std::vector<uint8_t> get_track_data_image() const {
return track_encoding(contents.begin(), contents.end(), {0xa1, 0xa1, 0xfb});
std::vector<Fragment> get_track_data_fragments() const {
return track_fragments(contents.begin(), contents.end(), {0xa1, 0xa1, 0xfb});
}
/*!
Acts like std::search except that it tries to find a start location from which all of the members of @c fragments
can be found in successive order with no more than a 'permissible' amount of gap between them.
Where 'permissible' is derived empirically from trial and error; in practice it's a measure of the number of bytes
a WD may produce when it has encountered a false sync, and I don't have documentation on that. So it's
derived from in-practice testing of STXs (which, hopefully, contain an accurate copy of what a WD would do,
so are themselves possibly a way to research that).
*/
template <typename Iterator> static Iterator find_fragments(Iterator begin, Iterator end, const std::vector<Fragment> &fragments) {
while(true) {
// To match the fragments, they must all be found, in order, with at most two bytes of gap.
auto this_begin = begin;
std::vector<uint8_t>::const_iterator first_location = end;
bool is_found = true;
bool is_first = true;
for(auto fragment: fragments) {
auto location = std::search(this_begin, end, fragment.contents.begin(), fragment.contents.end());
// If fragment wasn't found at all, it's never going to be found. So game over.
if(location == end) {
return location;
}
// Otherwise, either mark
if(is_first) {
first_location = location;
} else if(location > this_begin + 5*fragment.prior_syncs) {
is_found = false;
break;
}
is_first = false;
this_begin = location + ssize_t(fragment.contents.size());
}
if(is_found) {
return first_location;
}
// TODO: can I assume more than this?
++begin;
}
return end;
}
private:
/// @returns The effect of encoding @c prefix followed by the bytes from @c begin to @c end as MFM data and then decoding them as if
/// observed by a WD read track command.
template <typename T> static std::vector<uint8_t> track_encoding(T begin, T end, std::initializer_list<uint8_t> prefix) {
std::vector<uint8_t> result;
/// observed by a WD read track command, split into fragments separated by any instances of false sync — since it's still unclear to me exactly what
/// a WD should put out in those instances.
template <typename T> static std::vector<Fragment> track_fragments(T begin, T end, std::initializer_list<uint8_t> prefix) {
std::vector<Fragment> result;
result.reserve(size_t(end - begin) + prefix.size());
PCMSegment segment;
@ -79,18 +131,44 @@ class TrackConstructor {
++begin;
}
// Decode, obeying false syncs.
// Decode, starting a new segment upon any false sync since I don't have good documentation
// presently on exactly how a WD should react to those.
using Shifter = Storage::Encodings::MFM::Shifter;
Shifter shifter;
shifter.set_should_obey_syncs(true);
shifter.set_is_double_density(true);
result.emplace_back();
// Add whatever comes from the track.
int ignore_count = 0;
for(auto bit: segment.data) {
shifter.add_input_bit(int(bit));
if(shifter.get_token() != Shifter::None) {
result.push_back(shifter.get_byte());
const auto token = shifter.get_token();
if(token != Shifter::None) {
if(ignore_count) {
--ignore_count;
continue;
}
// If anything other than a byte is encountered,
// skip it and the next thing to be reported,
// beginning a new fragment.
if(token != Shifter::Token::Byte) {
ignore_count = 1;
if(!result.back().contents.empty()) {
result.emplace_back();
} else {
++result.back().prior_syncs;
}
continue;
}
// This was an ordinary byte, retain it.
result.back().contents.push_back(shifter.get_byte());
}
}
@ -142,11 +220,11 @@ class TrackConstructor {
for(const auto &sector: sectors_) {
{
// Find out what the address would look like, if found in a read track.
const auto track_address = sector.get_track_address_image();
const auto address_fragments = sector.get_track_address_fragments();
// Try to locate the header within the track image; if it can't be found then settle for
// the next thing that looks like a header of any sort.
auto address_position = std::search(track_position, track_data_.end(), track_address.begin(), track_address.end());
auto address_position = TrackConstructor::Sector::find_fragments(track_position, track_data_.end(), address_fragments);
if(address_position == track_data_.end()) {
address_position = std::search(track_position, track_data_.end(), sync_mark.begin(), sync_mark.end());
}
@ -162,9 +240,9 @@ class TrackConstructor {
// Do much the same thing for the data, if it exists.
if(!(sector.status & 0x10)) {
const auto track_data = sector.get_track_data_image();
const auto data_fragments = sector.get_track_data_fragments();
auto data_position = std::search(track_position, track_data_.end(), track_data.begin(), track_data.end());
auto data_position = TrackConstructor::Sector::find_fragments(track_position, track_data_.end(), data_fragments);
if(data_position == track_data_.end()) {
data_position = std::search(track_position, track_data_.end(), sync_mark.begin(), sync_mark.end());
}