1
0
mirror of https://github.com/TomHarte/CLK.git synced 2024-11-29 12:50:28 +00:00

Merge pull request #1112 from TomHarte/VDPs

Clean up TMS9918-related code.
This commit is contained in:
Thomas Harte 2023-01-10 13:40:47 -05:00 committed by GitHub
commit dbff7592f5
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
16 changed files with 2284 additions and 1859 deletions

View File

@ -48,7 +48,9 @@ struct Target: public Analyser::Static::Target, public Reflection::StructImpl<Ta
}
};
#define is_master_system(v) v >= Analyser::Static::Sega::Target::Model::MasterSystem
constexpr bool is_master_system(Analyser::Static::Sega::Target::Model model) {
return model >= Analyser::Static::Sega::Target::Model::MasterSystem;
}
}
}

File diff suppressed because it is too large Load Diff

View File

@ -12,13 +12,38 @@
#include "../../Outputs/CRT/CRT.hpp"
#include "../../ClockReceiver/ClockReceiver.hpp"
#include "Implementation/9918Base.hpp"
#include <cstdint>
namespace TI {
namespace TMS {
enum Personality {
TMS9918A, // includes the 9928 and 9929; set TV standard and output device as desired.
V9938,
V9958,
// Sega extensions.
SMSVDP,
SMS2VDP,
GGVDP,
MDVDP,
};
enum class TVStandard {
/*! i.e. 50Hz output at around 312.5 lines/field */
PAL,
/*! i.e. 60Hz output at around 262.5 lines/field */
NTSC
};
}
}
#include "Implementation/9918Base.hpp"
namespace TI {
namespace TMS {
/*!
Provides emulation of the TMS9918a, TMS9928 and TMS9929. Likely in the future to be the
vessel for emulation of sufficiently close derivatives, such as the Master System VDP.
@ -30,13 +55,10 @@ namespace TMS {
These chips have only one non-on-demand interaction with the outside world: an interrupt line.
See get_time_until_interrupt and get_interrupt_line for asynchronous operation options.
*/
class TMS9918: public Base {
template <Personality personality> class TMS9918: private Base<personality> {
public:
/*!
Constructs an instance of the drive controller that behaves according to personality @c p.
@param p The type of controller to emulate.
*/
TMS9918(Personality p);
/*! Constructs an instance of the VDP that behaves according to the templated personality. */
TMS9918();
/*! Sets the TV standard for this TMS, if that is hard-coded in hardware. */
void set_tv_standard(TVStandard standard);
@ -44,18 +66,24 @@ class TMS9918: public Base {
/*! Sets the scan target this TMS will post content to. */
void set_scan_target(Outputs::Display::ScanTarget *);
/// Gets the current scan status.
/*! Gets the current scan status. */
Outputs::Display::ScanStatus get_scaled_scan_status() const;
/*! Sets the type of display the CRT will request. */
/*! Sets the type of CRT display. */
void set_display_type(Outputs::Display::DisplayType);
/*! Gets the type of display the CRT will request. */
/*! Gets the type of CRT display. */
Outputs::Display::DisplayType get_display_type() const;
/*!
Runs the VCP for the number of cycles indicate; it is an implicit assumption of the code
that the input clock rate is 3579545 Hz, the NTSC colour clock rate.
Runs the VDP for the number of cycles indicate; the input clock rate is implicitly assumed.
For everything except the Mega Drive VDP:
* the input clock rate should be 3579545 Hz, the NTSC colour clock rate.
For the Mega Drive:
* the input clock rate should be around 7.6MHz; 15/7ths of the NTSC colour
clock rate for NTSC output and 12/7ths of the PAL colour clock rate for PAL output.
*/
void run_for(const HalfCycles cycles);
@ -65,11 +93,11 @@ class TMS9918: public Base {
/*! Gets a register value. */
uint8_t read(int address);
/*! Gets the current scan line; provided by the Master System only. */
uint8_t get_current_line();
/*! Gets the current scan line; provided by the Sega VDPs only. */
uint8_t get_current_line() const;
/*! Gets the current latched horizontal counter; provided by the Master System only. */
uint8_t get_latched_horizontal_counter();
/*! Gets the current latched horizontal counter; provided by the Sega VDPs only. */
uint8_t get_latched_horizontal_counter() const;
/*! Latches the current horizontal counter. */
void latch_horizontal_counter();
@ -81,7 +109,7 @@ class TMS9918: public Base {
If get_interrupt_line is true now of if get_interrupt_line would
never return true, returns HalfCycles::max().
*/
HalfCycles get_next_sequence_point();
HalfCycles get_next_sequence_point() const;
/*!
Returns the amount of time until the nominated line interrupt position is
@ -96,7 +124,7 @@ class TMS9918: public Base {
/*!
@returns @c true if the interrupt line is currently active; @c false otherwise.
*/
bool get_interrupt_line();
bool get_interrupt_line() const;
};
}

View File

@ -0,0 +1,809 @@
//
// 9918.cpp
// Clock Signal
//
// Created by Thomas Harte on 25/11/2017.
// Copyright 2017 Thomas Harte. All rights reserved.
//
#include "../9918.hpp"
#include <cassert>
#include <cstring>
#include <cstdlib>
#include "../../../Outputs/Log.hpp"
using namespace TI::TMS;
namespace {
// 342 internal cycles are 228/227.5ths of a line, so 341.25 cycles should be a whole
// line. Therefore multiply everything by four, but set line length to 1365 rather than 342*4 = 1368.
constexpr unsigned int CRTCyclesPerLine = 1365;
constexpr unsigned int CRTCyclesDivider = 4;
}
template <Personality personality>
Base<personality>::Base() :
crt_(CRTCyclesPerLine, CRTCyclesDivider, Outputs::Display::Type::NTSC60, Outputs::Display::InputDataType::Red8Green8Blue8) {
// Unimaginatively, this class just passes RGB through to the shader. Investigation is needed
// into whether there's a more natural form. It feels unlikely given the diversity of chips modelled.
if constexpr (is_sega_vdp(personality)) {
mode_timing_.line_interrupt_position = 64;
mode_timing_.end_of_frame_interrupt_position.column = 63;
mode_timing_.end_of_frame_interrupt_position.row = 193;
}
// Establish that output is delayed after reading by `output_lag` cycles; start
// at a random position.
read_pointer_.row = rand() % 262;
read_pointer_.column = rand() % (Timing<personality>::CyclesPerLine - output_lag);
write_pointer_.row = read_pointer_.row;
write_pointer_.column = read_pointer_.column + output_lag;
}
template <Personality personality>
TMS9918<personality>::TMS9918() {
this->crt_.set_display_type(Outputs::Display::DisplayType::RGB);
this->crt_.set_visible_area(Outputs::Display::Rect(0.07f, 0.0375f, 0.875f, 0.875f));
// The TMS remains in-phase with the NTSC colour clock; this is an empirical measurement
// intended to produce the correct relationship between the hard edges between pixels and
// the colour clock. It was eyeballed rather than derived from any knowledge of the TMS
// colour burst generator because I've yet to find any.
this->crt_.set_immediate_default_phase(0.85f);
}
template <Personality personality>
void TMS9918<personality>::set_tv_standard(TVStandard standard) {
this->tv_standard_ = standard;
switch(standard) {
case TVStandard::PAL:
this->mode_timing_.total_lines = 313;
this->mode_timing_.first_vsync_line = 253;
this->crt_.set_new_display_type(CRTCyclesPerLine, Outputs::Display::Type::PAL50);
break;
default:
this->mode_timing_.total_lines = 262;
this->mode_timing_.first_vsync_line = 227;
this->crt_.set_new_display_type(CRTCyclesPerLine, Outputs::Display::Type::NTSC60);
break;
}
}
template <Personality personality>
void TMS9918<personality>::set_scan_target(Outputs::Display::ScanTarget *scan_target) {
this->crt_.set_scan_target(scan_target);
}
template <Personality personality>
Outputs::Display::ScanStatus TMS9918<personality>::get_scaled_scan_status() const {
// The input was scaled by 3/4 to convert half cycles to internal ticks,
// so undo that and also allow for: (i) the multiply by 4 that it takes
// to reach the CRT; and (ii) the fact that the half-cycles value was scaled,
// and this should really reply in whole cycles.
return this->crt_.get_scaled_scan_status() * (4.0f / (3.0f * 8.0f));
}
template <Personality personality>
void TMS9918<personality>::set_display_type(Outputs::Display::DisplayType display_type) {
this->crt_.set_display_type(display_type);
}
template <Personality personality>
Outputs::Display::DisplayType TMS9918<personality>::get_display_type() const {
return this->crt_.get_display_type();
}
void LineBuffer::reset_sprite_collection() {
sprites_stopped = false;
active_sprite_slot = 0;
for(int c = 0; c < 8; ++c) {
active_sprites[c].shift_position = 0;
}
}
template <Personality personality>
void Base<personality>::posit_sprite(LineBuffer &buffer, int sprite_number, int sprite_position, int screen_row) {
if(!(status_ & StatusSpriteOverflow)) {
status_ = uint8_t((status_ & ~0x1f) | (sprite_number & 0x1f));
}
if(buffer.sprites_stopped) return;
// A sprite Y of 208 means "don't scan the list any further".
if(mode_timing_.allow_sprite_terminator && sprite_position == mode_timing_.sprite_terminator) {
buffer.sprites_stopped = true;
return;
}
const int sprite_row = (((screen_row + 1) % mode_timing_.total_lines) - ((sprite_position + 1) & 255)) & 255;
if(sprite_row < 0 || sprite_row >= sprite_height_) return;
if(buffer.active_sprite_slot == mode_timing_.maximum_visible_sprites) {
status_ |= StatusSpriteOverflow;
return;
}
LineBuffer::ActiveSprite &sprite = buffer.active_sprites[buffer.active_sprite_slot];
sprite.index = sprite_number;
sprite.row = sprite_row >> (sprites_magnified_ ? 1 : 0);
++buffer.active_sprite_slot;
}
template <Personality personality>
void TMS9918<personality>::run_for(const HalfCycles cycles) {
// As specific as I've been able to get:
// Scanline time is always 228 cycles.
// PAL output is 313 lines total. NTSC output is 262 lines total.
// Interrupt is signalled upon entering the lower border.
// Convert 456 clocked half cycles per line to 342 internal cycles per line;
// the internal clock is 1.5 times the nominal 3.579545 Mhz that I've advertised
// for this part. So multiply by three quarters.
const int int_cycles = this->clock_converter_.to_internal(cycles.as<int>());
if(!int_cycles) return;
// There are two intertwined processes here, 'writing' (which means writing to the
// line buffers, i.e. it's everything to do with collecting a line) and 'reading'
// (which means reading from the line buffers and generating video).
int write_cycles_pool = int_cycles;
int read_cycles_pool = int_cycles;
while(write_cycles_pool || read_cycles_pool) {
#ifndef NDEBUG
LineBufferPointer backup = this->read_pointer_;
#endif
if(write_cycles_pool) {
// Determine how much writing to do.
const int write_cycles = std::min(
Timing<personality>::CyclesPerLine - this->write_pointer_.column,
write_cycles_pool
);
const int end_column = this->write_pointer_.column + write_cycles;
LineBuffer &line_buffer = this->line_buffers_[this->write_pointer_.row];
// Determine what this does to any enqueued VRAM access.
this->minimum_access_column_ = this->write_pointer_.column + this->cycles_until_access_;
this->cycles_until_access_ -= write_cycles;
// ---------------------------------------
// Latch scrolling position, if necessary.
// ---------------------------------------
if constexpr (is_sega_vdp(personality)) {
if(this->write_pointer_.column < 61 && end_column >= 61) {
if(!this->write_pointer_.row) {
this->master_system_.latched_vertical_scroll = this->master_system_.vertical_scroll;
if(this->master_system_.mode4_enable) {
this->mode_timing_.pixel_lines = 192;
if(this->mode2_enable_ && this->mode1_enable_) this->mode_timing_.pixel_lines = 224;
if(this->mode2_enable_ && this->mode3_enable_) this->mode_timing_.pixel_lines = 240;
this->mode_timing_.allow_sprite_terminator = this->mode_timing_.pixel_lines == 192;
this->mode_timing_.first_vsync_line = (this->mode_timing_.total_lines + this->mode_timing_.pixel_lines) >> 1;
this->mode_timing_.end_of_frame_interrupt_position.row = this->mode_timing_.pixel_lines + 1;
}
}
line_buffer.latched_horizontal_scroll = this->master_system_.horizontal_scroll;
}
}
// ------------------------
// Perform memory accesses.
// ------------------------
#define fetch(function, clock) \
const int first_window = from_internal<personality, clock>(this->write_pointer_.column);\
const int final_window = from_internal<personality, clock>(end_column); \
if(first_window == final_window) break; \
if(final_window != clock_rate<personality, clock>()) { \
function<true>(first_window, final_window); \
} else { \
function<false>(first_window, final_window); \
}
switch(line_buffer.line_mode) {
case LineMode::Text: { fetch(this->template fetch_tms_text, Clock::TMSMemoryWindow); } break;
case LineMode::Character: { fetch(this->template fetch_tms_character, Clock::TMSMemoryWindow); } break;
case LineMode::SMS: { fetch(this->template fetch_sms, Clock::TMSMemoryWindow); } break;
case LineMode::Refresh: { fetch(this->template fetch_tms_refresh, Clock::TMSMemoryWindow); } break;
}
#undef fetch
// -------------------------------
// Check for interrupt conditions.
// -------------------------------
if(this->write_pointer_.column < this->mode_timing_.line_interrupt_position && end_column >= this->mode_timing_.line_interrupt_position) {
// The Sega VDP offers a decrementing counter for triggering line interrupts;
// it is reloaded either when it overflows or upon every non-pixel line after the first.
// It is otherwise decremented.
if constexpr (is_sega_vdp(personality)) {
if(this->write_pointer_.row >= 0 && this->write_pointer_.row <= this->mode_timing_.pixel_lines) {
--this->line_interrupt_counter;
if(this->line_interrupt_counter == 0xff) {
this->line_interrupt_pending_ = true;
this->line_interrupt_counter = this->line_interrupt_target;
}
} else {
this->line_interrupt_counter = this->line_interrupt_target;
}
}
// TODO: the V9938 provides line interrupts from direct specification of the target line.
// So life is easy.
}
if(
this->write_pointer_.row == this->mode_timing_.end_of_frame_interrupt_position.row &&
this->write_pointer_.column < this->mode_timing_.end_of_frame_interrupt_position.column &&
end_column >= this->mode_timing_.end_of_frame_interrupt_position.column
) {
this->status_ |= StatusInterrupt;
}
// -------------
// Advance time.
// -------------
this->write_pointer_.column = end_column;
write_cycles_pool -= write_cycles;
if(this->write_pointer_.column == Timing<personality>::CyclesPerLine) {
this->write_pointer_.column = 0;
this->write_pointer_.row = (this->write_pointer_.row + 1) % this->mode_timing_.total_lines;
LineBuffer &next_line_buffer = this->line_buffers_[this->write_pointer_.row];
// Establish the current screen output mode, which will be captured as a
// line mode momentarily.
this->screen_mode_ = this->current_screen_mode();
// Based on the output mode, pick a line mode.
next_line_buffer.first_pixel_output_column = Timing<personality>::FirstPixelCycle;
next_line_buffer.next_border_column = Timing<personality>::CyclesPerLine;
next_line_buffer.pixel_count = 256;
this->mode_timing_.maximum_visible_sprites = 4;
switch(this->screen_mode_) {
case ScreenMode::Text:
next_line_buffer.line_mode = LineMode::Text;
next_line_buffer.first_pixel_output_column = Timing<personality>::FirstTextCycle;
next_line_buffer.next_border_column = Timing<personality>::LastTextCycle;
next_line_buffer.pixel_count = 240;
break;
case ScreenMode::SMSMode4:
next_line_buffer.line_mode = LineMode::SMS;
this->mode_timing_.maximum_visible_sprites = 8;
break;
default:
next_line_buffer.line_mode = LineMode::Character;
break;
}
if(
(this->screen_mode_ == ScreenMode::Blank) ||
(this->write_pointer_.row >= this->mode_timing_.pixel_lines && this->write_pointer_.row != this->mode_timing_.total_lines-1))
next_line_buffer.line_mode = LineMode::Refresh;
}
}
#ifndef NDEBUG
assert(backup.row == this->read_pointer_.row && backup.column == this->read_pointer_.column);
backup = this->write_pointer_;
#endif
if(read_cycles_pool) {
// Determine how much time has passed in the remainder of this line, and proceed.
const int target_read_cycles = std::min(
Timing<personality>::CyclesPerLine - this->read_pointer_.column,
read_cycles_pool
);
int read_cycles_performed = 0;
uint32_t next_cram_value = 0;
while(read_cycles_performed < target_read_cycles) {
int read_cycles = target_read_cycles - read_cycles_performed;
if(!read_cycles) continue;
// Grab the next CRAM dot value and schedule a break in output if applicable.
const uint32_t cram_value = next_cram_value;
if constexpr (is_sega_vdp(personality)) {
next_cram_value = 0;
if(!this->upcoming_cram_dots_.empty() && this->upcoming_cram_dots_.front().location.row == this->read_pointer_.row) {
int time_until_dot = this->upcoming_cram_dots_.front().location.column - this->read_pointer_.column;
if(time_until_dot < read_cycles) {
read_cycles = time_until_dot;
next_cram_value = this->upcoming_cram_dots_.front().value;
this->upcoming_cram_dots_.erase(this->upcoming_cram_dots_.begin());
}
}
}
read_cycles_performed += read_cycles;
const int end_column = this->read_pointer_.column + read_cycles;
LineBuffer &line_buffer = this->line_buffers_[this->read_pointer_.row];
// --------------------
// Output video stream.
// --------------------
#define crt_convert(action, time) this->crt_.action(from_internal<personality, Clock::CRT>(time))
#define output_sync(x) crt_convert(output_sync, x)
#define output_blank(x) crt_convert(output_blank, x)
#define output_default_colour_burst(x) crt_convert(output_default_colour_burst, x)
#define intersect(left, right, code) { \
const int start = std::max(this->read_pointer_.column, left); \
const int end = std::min(end_column, right); \
if(end > start) {\
code;\
}\
}
#define border(left, right) intersect(left, right, this->output_border(end - start, cram_value))
if(line_buffer.line_mode == LineMode::Refresh || this->read_pointer_.row > this->mode_timing_.pixel_lines) {
if(
this->read_pointer_.row >= this->mode_timing_.first_vsync_line &&
this->read_pointer_.row < this->mode_timing_.first_vsync_line + 4
) {
// Vertical sync.
// TODO: the Mega Drive supports interlaced video, I think?
if(end_column == Timing<personality>::CyclesPerLine) {
output_sync(Timing<personality>::CyclesPerLine);
}
} else {
// Right border.
border(0, Timing<personality>::EndOfRightBorder);
// Blanking region: output the entire sequence when the cursor
// crosses the start-of-border point.
if(
this->read_pointer_.column < Timing<personality>::StartOfLeftBorder &&
end_column >= Timing<personality>::StartOfLeftBorder
) {
output_blank(Timing<personality>::StartOfSync - Timing<personality>::EndOfRightBorder);
output_sync(Timing<personality>::EndOfSync - Timing<personality>::StartOfSync);
output_blank(Timing<personality>::StartOfColourBurst - Timing<personality>::EndOfSync);
output_default_colour_burst(Timing<personality>::EndOfColourBurst - Timing<personality>::StartOfColourBurst);
output_blank(Timing<personality>::StartOfLeftBorder - Timing<personality>::EndOfColourBurst);
}
// Border colour for the rest of the line.
border(Timing<personality>::StartOfLeftBorder, Timing<personality>::CyclesPerLine);
}
} else {
// Right border.
border(0, Timing<personality>::EndOfRightBorder);
// Blanking region.
if(
this->read_pointer_.column < Timing<personality>::StartOfLeftBorder &&
end_column >= Timing<personality>::StartOfLeftBorder
) {
output_blank(Timing<personality>::StartOfSync - Timing<personality>::EndOfRightBorder);
output_sync(Timing<personality>::EndOfSync - Timing<personality>::StartOfSync);
output_blank(Timing<personality>::StartOfColourBurst - Timing<personality>::EndOfSync);
output_default_colour_burst(Timing<personality>::EndOfColourBurst - Timing<personality>::StartOfColourBurst);
output_blank(Timing<personality>::StartOfLeftBorder - Timing<personality>::EndOfColourBurst);
}
// Left border.
border(Timing<personality>::StartOfLeftBorder, line_buffer.first_pixel_output_column);
#define draw(function, clock) { \
const int relative_start = from_internal<personality, clock>(start - line_buffer.first_pixel_output_column); \
const int relative_end = from_internal<personality, clock>(end - line_buffer.first_pixel_output_column); \
if(relative_start == relative_end) break; \
this->function; }
// Pixel region.
intersect(
line_buffer.first_pixel_output_column,
line_buffer.next_border_column,
if(!this->asked_for_write_area_) {
this->asked_for_write_area_ = true;
this->pixel_origin_ = this->pixel_target_ = reinterpret_cast<uint32_t *>(
this->crt_.begin_data(line_buffer.pixel_count)
);
}
if(this->pixel_target_) {
switch(line_buffer.line_mode) {
case LineMode::SMS: draw(draw_sms(relative_start, relative_end, cram_value), Clock::TMSPixel); break;
case LineMode::Character: draw(draw_tms_character(relative_start, relative_end), Clock::TMSPixel); break;
case LineMode::Text: draw(draw_tms_text(relative_start, relative_end), Clock::TMSPixel); break;
case LineMode::Refresh: break; /* Dealt with elsewhere. */
}
}
if(end == line_buffer.next_border_column) {
const int length = line_buffer.next_border_column - line_buffer.first_pixel_output_column;
this->crt_.output_data(from_internal<personality, Clock::CRT>(length), line_buffer.pixel_count);
this->pixel_origin_ = this->pixel_target_ = nullptr;
this->asked_for_write_area_ = false;
}
);
#undef draw
// Additional right border, if called for.
if(line_buffer.next_border_column != Timing<personality>::CyclesPerLine) {
border(line_buffer.next_border_column, Timing<personality>::CyclesPerLine);
}
}
#undef border
#undef intersect
#undef crt_convert
#undef output_sync
#undef output_blank
#undef output_default_colour_burst
// -------------
// Advance time.
// -------------
this->read_pointer_.column = end_column;
}
read_cycles_pool -= target_read_cycles;
if(this->read_pointer_.column == Timing<personality>::CyclesPerLine) {
this->read_pointer_.column = 0;
this->read_pointer_.row = (this->read_pointer_.row + 1) % this->mode_timing_.total_lines;
}
}
assert(backup.row == this->write_pointer_.row && backup.column == this->write_pointer_.column);
}
}
template <Personality personality>
void Base<personality>::output_border(int cycles, [[maybe_unused]] uint32_t cram_dot) {
cycles = from_internal<personality, Clock::CRT>(cycles);
const uint32_t border_colour =
is_sega_vdp(personality) ?
master_system_.colour_ram[16 + background_colour_] :
palette[background_colour_];
if constexpr (is_sega_vdp(personality)) {
if(cram_dot) {
uint32_t *const pixel_target = reinterpret_cast<uint32_t *>(crt_.begin_data(1));
if(pixel_target) {
*pixel_target = border_colour | cram_dot;
}
// Four CRT cycles is one pixel width, so this doesn't need clock conversion.
// TODO: on the Mega Drive it may be only 3 colour cycles, depending on mode.
crt_.output_level(4);
cycles -= 4;
}
}
if(!cycles) {
return;
}
// If the border colour is 0, that can be communicated
// more efficiently as an explicit blank.
if(border_colour) {
uint32_t *const pixel_target = reinterpret_cast<uint32_t *>(crt_.begin_data(1));
if(pixel_target) {
*pixel_target = border_colour;
}
crt_.output_level(cycles);
} else {
crt_.output_blank(cycles);
}
}
template <Personality personality>
void TMS9918<personality>::write(int address, uint8_t value) {
// Writes to address 0 are writes to the video RAM. Store
// the value and return.
if(!(address & 1)) {
this->write_phase_ = false;
// Enqueue the write to occur at the next available slot.
this->read_ahead_buffer_ = value;
this->queued_access_ = MemoryAccess::Write;
this->cycles_until_access_ = Timing<personality>::VRAMAccessDelay;
return;
}
// Writes to address 1 are performed in pairs; if this is the
// low byte of a value, store it and wait for the high byte.
if(!this->write_phase_) {
this->low_write_ = value;
this->write_phase_ = true;
// The initial write should half update the access pointer.
this->ram_pointer_ = (this->ram_pointer_ & 0xff00) | this->low_write_;
return;
}
// The RAM pointer is always set on a second write, regardless of
// whether the caller is intending to enqueue a VDP operation.
this->ram_pointer_ = (this->ram_pointer_ & 0x00ff) | uint16_t(value << 8);
this->write_phase_ = false;
if(value & 0x80) {
if constexpr (is_sega_vdp(personality)) {
if(value & 0x40) {
this->master_system_.cram_is_selected = true;
return;
}
value &= 0xf;
} else {
value &= 0x7;
}
// This is a write to a register.
switch(value) {
case 0:
if constexpr (is_sega_vdp(personality)) {
this->master_system_.vertical_scroll_lock = this->low_write_ & 0x80;
this->master_system_.horizontal_scroll_lock = this->low_write_ & 0x40;
this->master_system_.hide_left_column = this->low_write_ & 0x20;
this->enable_line_interrupts_ = this->low_write_ & 0x10;
this->master_system_.shift_sprites_8px_left = this->low_write_ & 0x08;
this->master_system_.mode4_enable = this->low_write_ & 0x04;
}
this->mode2_enable_ = this->low_write_ & 0x02;
break;
case 1:
this->blank_display_ = !(this->low_write_ & 0x40);
this->generate_interrupts_ = this->low_write_ & 0x20;
this->mode1_enable_ = this->low_write_ & 0x10;
this->mode3_enable_ = this->low_write_ & 0x08;
this->sprites_16x16_ = this->low_write_ & 0x02;
this->sprites_magnified_ = this->low_write_ & 0x01;
this->sprite_height_ = 8;
if(this->sprites_16x16_) this->sprite_height_ <<= 1;
if(this->sprites_magnified_) this->sprite_height_ <<= 1;
break;
case 2:
this->pattern_name_address_ = size_t((this->low_write_ & 0xf) << 10) | 0x3ff;
this->master_system_.pattern_name_address = this->pattern_name_address_ | ((personality == TMS::SMSVDP) ? 0x000 : 0x400);
break;
case 3:
this->colour_table_address_ = size_t(this->low_write_ << 6) | 0x3f;
break;
case 4:
this->pattern_generator_table_address_ = size_t((this->low_write_ & 0x07) << 11) | 0x7ff;
break;
case 5:
this->sprite_attribute_table_address_ = size_t((this->low_write_ & 0x7f) << 7) | 0x7f;
this->master_system_.sprite_attribute_table_address = this->sprite_attribute_table_address_ | ((personality == TMS::SMSVDP) ? 0x00 : 0x80);
break;
case 6:
this->sprite_generator_table_address_ = size_t((this->low_write_ & 0x07) << 11) | 0x7ff;
this->master_system_.sprite_generator_table_address = this->sprite_generator_table_address_ | ((personality == TMS::SMSVDP) ? 0x0000 : 0x1800);
break;
case 7:
this->text_colour_ = this->low_write_ >> 4;
this->background_colour_ = this->low_write_ & 0xf;
break;
case 8:
if constexpr (is_sega_vdp(personality)) {
this->master_system_.horizontal_scroll = this->low_write_;
}
break;
case 9:
if constexpr (is_sega_vdp(personality)) {
this->master_system_.vertical_scroll = this->low_write_;
}
break;
case 10:
if constexpr (is_sega_vdp(personality)) {
this->line_interrupt_target = this->low_write_;
}
break;
default:
LOG("Unknown TMS write: " << int(this->low_write_) << " to " << int(value));
break;
}
} else {
// This is an access via the RAM pointer.
if(!(value & 0x40)) {
// A read request is enqueued upon setting the address; conversely a write
// won't be enqueued unless and until some actual data is supplied.
this->queued_access_ = MemoryAccess::Read;
this->cycles_until_access_ = Timing<personality>::VRAMAccessDelay;
}
this->master_system_.cram_is_selected = false;
}
}
template <Personality personality>
uint8_t TMS9918<personality>::get_current_line() const {
// Determine the row to return.
constexpr int row_change_position = 63; // This is the proper Master System value; substitute if any other VDPs turn out to have this functionality.
int source_row =
(this->write_pointer_.column < row_change_position)
? (this->write_pointer_.row + this->mode_timing_.total_lines - 1) % this->mode_timing_.total_lines
: this->write_pointer_.row;
if(this->tv_standard_ == TVStandard::NTSC) {
if(this->mode_timing_.pixel_lines == 240) {
// NTSC 256x240: 00-FF, 00-06
} else if(this->mode_timing_.pixel_lines == 224) {
// NTSC 256x224: 00-EA, E5-FF
if(source_row >= 0xeb) source_row -= 6;
} else {
// NTSC 256x192: 00-DA, D5-FF
if(source_row >= 0xdb) source_row -= 6;
}
} else {
if(this->mode_timing_.pixel_lines == 240) {
// PAL 256x240: 00-FF, 00-0A, D2-FF
if(source_row >= 267) source_row -= 0x39;
} else if(this->mode_timing_.pixel_lines == 224) {
// PAL 256x224: 00-FF, 00-02, CA-FF
if(source_row >= 259) source_row -= 0x39;
} else {
// PAL 256x192: 00-F2, BA-FF
if(source_row >= 0xf3) source_row -= 0x39;
}
}
return uint8_t(source_row);
}
template <Personality personality>
uint8_t TMS9918<personality>::read(int address) {
this->write_phase_ = false;
// Reads from address 0 read video RAM, via the read-ahead buffer.
if(!(address & 1)) {
// Enqueue the write to occur at the next available slot.
const uint8_t result = this->read_ahead_buffer_;
this->queued_access_ = MemoryAccess::Read;
return result;
}
// Reads from address 1 get the status register.
const uint8_t result = this->status_;
this->status_ &= ~(StatusInterrupt | StatusSpriteOverflow | StatusSpriteCollision);
this->line_interrupt_pending_ = false;
return result;
}
template <Personality personality>
HalfCycles TMS9918<personality>::get_next_sequence_point() const {
if(!this->generate_interrupts_ && !this->enable_line_interrupts_) return HalfCycles::max();
if(get_interrupt_line()) return HalfCycles::max();
// Calculate the amount of time until the next end-of-frame interrupt.
const int frame_length = Timing<personality>::CyclesPerLine * this->mode_timing_.total_lines;
int time_until_frame_interrupt =
(
((this->mode_timing_.end_of_frame_interrupt_position.row * Timing<personality>::CyclesPerLine) + this->mode_timing_.end_of_frame_interrupt_position.column + frame_length) -
((this->write_pointer_.row * Timing<personality>::CyclesPerLine) + this->write_pointer_.column)
) % frame_length;
if(!time_until_frame_interrupt) time_until_frame_interrupt = frame_length;
if(!this->enable_line_interrupts_) {
return this->clock_converter_.half_cycles_before_internal_cycles(time_until_frame_interrupt);
}
// Calculate when the next line interrupt will occur.
int next_line_interrupt_row = -1;
int cycles_to_next_interrupt_threshold = this->mode_timing_.line_interrupt_position - this->write_pointer_.column;
int line_of_next_interrupt_threshold = this->write_pointer_.row;
if(cycles_to_next_interrupt_threshold <= 0) {
cycles_to_next_interrupt_threshold += Timing<personality>::CyclesPerLine;
++line_of_next_interrupt_threshold;
}
if constexpr (is_sega_vdp(personality)) {
// If there is still time for a line interrupt this frame, that'll be it;
// otherwise it'll be on the next frame, supposing there's ever time for
// it at all.
if(line_of_next_interrupt_threshold + this->line_interrupt_counter <= this->mode_timing_.pixel_lines) {
next_line_interrupt_row = line_of_next_interrupt_threshold + this->line_interrupt_counter;
} else {
if(this->line_interrupt_target <= this->mode_timing_.pixel_lines)
next_line_interrupt_row = this->mode_timing_.total_lines + this->line_interrupt_target;
}
}
// If there's actually no interrupt upcoming, despite being enabled, either return
// the frame end interrupt or no interrupt pending as appropriate.
if(next_line_interrupt_row == -1) {
return this->generate_interrupts_ ?
this->clock_converter_.half_cycles_before_internal_cycles(time_until_frame_interrupt) :
HalfCycles::max();
}
// Figure out the number of internal cycles until the next line interrupt, which is the amount
// of time to the next tick over and then next_line_interrupt_row - row_ lines further.
const int local_cycles_until_line_interrupt = cycles_to_next_interrupt_threshold + (next_line_interrupt_row - line_of_next_interrupt_threshold) * Timing<personality>::CyclesPerLine;
if(!this->generate_interrupts_) return this->clock_converter_.half_cycles_before_internal_cycles(local_cycles_until_line_interrupt);
// Return whichever interrupt is closer.
return this->clock_converter_.half_cycles_before_internal_cycles(std::min(local_cycles_until_line_interrupt, time_until_frame_interrupt));
}
template <Personality personality>
HalfCycles TMS9918<personality>::get_time_until_line(int line) {
if(line < 0) line += this->mode_timing_.total_lines;
int cycles_to_next_interrupt_threshold = this->mode_timing_.line_interrupt_position - this->write_pointer_.column;
int line_of_next_interrupt_threshold = this->write_pointer_.row;
if(cycles_to_next_interrupt_threshold <= 0) {
cycles_to_next_interrupt_threshold += Timing<personality>::CyclesPerLine;
++line_of_next_interrupt_threshold;
}
if(line_of_next_interrupt_threshold > line) {
line += this->mode_timing_.total_lines;
}
return this->clock_converter_.half_cycles_before_internal_cycles(cycles_to_next_interrupt_threshold + (line - line_of_next_interrupt_threshold)*Timing<personality>::CyclesPerLine);
}
template <Personality personality>
bool TMS9918<personality>::get_interrupt_line() const {
return
((this->status_ & StatusInterrupt) && this->generate_interrupts_) ||
(this->enable_line_interrupts_ && this->line_interrupt_pending_);
}
// TODO: [potentially] remove Master System timing assumptions in latch and get_latched below.
template <Personality personality>uint8_t TMS9918<personality>::get_latched_horizontal_counter() const {
// Translate from internal numbering, which puts pixel output
// in the final 256 pixels of 342, to the public numbering,
// which counts the 256 pixels as items 0255, starts
// counting at -48, and returns only the top 8 bits of the number.
int public_counter = this->latched_column_ - (342 - 256);
if(public_counter < -46) public_counter += 342;
return uint8_t(public_counter >> 1);
}
template <Personality personality>
void TMS9918<personality>::latch_horizontal_counter() {
this->latched_column_ = this->write_pointer_.column;
}
template class TI::TMS::TMS9918<Personality::TMS9918A>;
template class TI::TMS::TMS9918<Personality::V9938>;
template class TI::TMS::TMS9918<Personality::V9958>;
template class TI::TMS::TMS9918<Personality::SMSVDP>;
template class TI::TMS::TMS9918<Personality::SMS2VDP>;
template class TI::TMS::TMS9918<Personality::GGVDP>;
template class TI::TMS::TMS9918<Personality::MDVDP>;

View File

@ -9,178 +9,24 @@
#ifndef TMS9918Base_hpp
#define TMS9918Base_hpp
#include "../../../Outputs/CRT/CRT.hpp"
#include "../../../ClockReceiver/ClockReceiver.hpp"
#include "ClockConverter.hpp"
#include "../../../ClockReceiver/ClockReceiver.hpp"
#include "../../../Numeric/BitReverse.hpp"
#include "../../../Outputs/CRT/CRT.hpp"
#include "PersonalityTraits.hpp"
#include <array>
#include <cassert>
#include <cstdint>
#include <cstring>
#include <memory>
#include <vector>
namespace TI {
namespace TMS {
enum Personality {
TMS9918A, // includes the 9928 and 9929; set TV standard and output device as desired.
V9938,
V9958,
SMSVDP,
SMS2VDP,
GGVDP,
};
enum class TVStandard {
/*! i.e. 50Hz output at around 312.5 lines/field */
PAL,
/*! i.e. 60Hz output at around 262.5 lines/field */
NTSC
};
#define is_sega_vdp(x) ((x) >= SMSVDP)
class Base {
public:
static uint32_t palette_pack(uint8_t r, uint8_t g, uint8_t b) {
uint32_t result = 0;
uint8_t *const result_ptr = reinterpret_cast<uint8_t *>(&result);
result_ptr[0] = r;
result_ptr[1] = g;
result_ptr[2] = b;
result_ptr[3] = 0;
return result;
}
protected:
static constexpr int output_lag = 11; // i.e. pixel output will occur 11 cycles after corresponding data read.
// The default TMS palette.
const uint32_t palette[16] = {
palette_pack(0, 0, 0),
palette_pack(0, 0, 0),
palette_pack(33, 200, 66),
palette_pack(94, 220, 120),
palette_pack(84, 85, 237),
palette_pack(125, 118, 252),
palette_pack(212, 82, 77),
palette_pack(66, 235, 245),
palette_pack(252, 85, 84),
palette_pack(255, 121, 120),
palette_pack(212, 193, 84),
palette_pack(230, 206, 128),
palette_pack(33, 176, 59),
palette_pack(201, 91, 186),
palette_pack(204, 204, 204),
palette_pack(255, 255, 255)
};
Base(Personality p);
const Personality personality_;
Outputs::CRT::CRT crt_;
TVStandard tv_standard_ = TVStandard::NTSC;
// Holds the contents of this VDP's connected DRAM.
std::vector<uint8_t> ram_;
// Holds the state of the DRAM/CRAM-access mechanism.
uint16_t ram_pointer_ = 0;
uint8_t read_ahead_buffer_ = 0;
enum class MemoryAccess {
Read, Write, None
} queued_access_ = MemoryAccess::None;
int cycles_until_access_ = 0;
int minimum_access_column_ = 0;
int vram_access_delay() {
// This seems to be correct for all currently-modelled VDPs;
// it's the delay between an external device scheduling a
// read or write and the very first time that can occur
// (though, in practice, it won't happen until the next
// external slot after this number of cycles after the
// device has requested the read or write).
return 6;
}
// Holds the main status register.
uint8_t status_ = 0;
// Current state of programmer input.
bool write_phase_ = false; // Determines whether the VDP is expecting the low or high byte of a write.
uint8_t low_write_ = 0; // Buffers the low byte of a write.
// Various programmable flags.
bool mode1_enable_ = false;
bool mode2_enable_ = false;
bool mode3_enable_ = false;
bool blank_display_ = false;
bool sprites_16x16_ = false;
bool sprites_magnified_ = false;
bool generate_interrupts_ = false;
int sprite_height_ = 8;
size_t pattern_name_address_ = 0; // i.e. address of the tile map.
size_t colour_table_address_ = 0; // address of the colour map (if applicable).
size_t pattern_generator_table_address_ = 0; // address of the tile contents.
size_t sprite_attribute_table_address_ = 0; // address of the sprite list.
size_t sprite_generator_table_address_ = 0; // address of the sprite contents.
uint8_t text_colour_ = 0;
uint8_t background_colour_ = 0;
// This implementation of this chip officially accepts a 3.58Mhz clock, but runs
// internally at 5.37Mhz. The following two help to maintain a lossless conversion
// from the one to the other.
int cycles_error_ = 0;
HalfCycles half_cycles_before_internal_cycles(int internal_cycles);
// Internal mechanisms for position tracking.
int latched_column_ = 0;
// A helper function to output the current border colour for
// the number of cycles supplied.
void output_border(int cycles, uint32_t cram_dot);
// A struct to contain timing information for the current mode.
struct {
/*
Vertical layout:
Lines 0 to [pixel_lines]: standard data fetch and drawing will occur.
... to [first_vsync_line]: refresh fetches will occur and border will be output.
.. to [2.5 or 3 lines later]: vertical sync is output.
... to [total lines - 1]: refresh fetches will occur and border will be output.
... for one line: standard data fetch will occur, without drawing.
*/
int total_lines = 262;
int pixel_lines = 192;
int first_vsync_line = 227;
// Maximum number of sprite slots to populate;
// if sprites beyond this number should be visible
// then the appropriate status information will be set.
int maximum_visible_sprites = 4;
// Set the position, in cycles, of the two interrupts,
// within a line.
struct {
int column = 4;
int row = 193;
} end_of_frame_interrupt_position;
int line_interrupt_position = -1;
// Enables or disabled the recognition of the sprite
// list terminator, and sets the terminator value.
bool allow_sprite_terminator = true;
uint8_t sprite_terminator = 0xd0;
} mode_timing_;
uint8_t line_interrupt_target = 0xff;
uint8_t line_interrupt_counter = 0;
bool enable_line_interrupts_ = false;
bool line_interrupt_pending_ = false;
// The screen mode is a necessary predecessor to picking the line mode,
// which is the thing latched per line.
enum class ScreenMode {
@ -190,7 +36,7 @@ class Base {
ColouredText,
Graphics,
SMSMode4
} screen_mode_;
};
enum class LineMode {
Text,
@ -199,7 +45,11 @@ class Base {
SMS
};
// Temporary buffers collect a representation of this line prior to pixel serialisation.
enum class MemoryAccess {
Read, Write, None
};
// Temporary buffers collect a representation of each line prior to pixel serialisation.
struct LineBuffer {
// The line mode describes the proper timing diagram for this line.
LineMode line_mode = LineMode::Text;
@ -238,6 +88,7 @@ class Base {
*/
int first_pixel_output_column = 94;
int next_border_column = 334;
size_t pixel_count = 256;
// An active sprite is one that has been selected for composition onto
// this line.
@ -255,7 +106,143 @@ class Base {
// being evaluated for display. This flag determines whether the sentinel has yet been reached.
void reset_sprite_collection();
} line_buffers_[313];
};
struct LineBufferPointer {
int row, column;
};
constexpr uint8_t StatusInterrupt = 0x80;
constexpr uint8_t StatusSpriteOverflow = 0x40;
constexpr int StatusSpriteCollisionShift = 5;
constexpr uint8_t StatusSpriteCollision = 0x20;
template <Personality personality> struct Base {
Base();
static constexpr int output_lag = 11; // i.e. pixel output will occur 11 cycles
// after corresponding data read.
static constexpr uint32_t palette_pack(uint8_t r, uint8_t g, uint8_t b) {
#if TARGET_RT_BIG_ENDIAN
return uint32_t((r << 24) | (g << 16) | (b << 8));
#else
return uint32_t((b << 16) | (g << 8) | r);
#endif
}
// The default TMS palette.
static constexpr std::array<uint32_t, 16> palette {
palette_pack(0, 0, 0),
palette_pack(0, 0, 0),
palette_pack(33, 200, 66),
palette_pack(94, 220, 120),
palette_pack(84, 85, 237),
palette_pack(125, 118, 252),
palette_pack(212, 82, 77),
palette_pack(66, 235, 245),
palette_pack(252, 85, 84),
palette_pack(255, 121, 120),
palette_pack(212, 193, 84),
palette_pack(230, 206, 128),
palette_pack(33, 176, 59),
palette_pack(201, 91, 186),
palette_pack(204, 204, 204),
palette_pack(255, 255, 255)
};
Outputs::CRT::CRT crt_;
TVStandard tv_standard_ = TVStandard::NTSC;
// Personality-specific metrics and converters.
ClockConverter<personality> clock_converter_;
// This VDP's DRAM.
std::array<uint8_t, memory_size(personality)> ram_;
// State of the DRAM/CRAM-access mechanism.
uint16_t ram_pointer_ = 0;
uint8_t read_ahead_buffer_ = 0;
MemoryAccess queued_access_ = MemoryAccess::None;
int cycles_until_access_ = 0;
int minimum_access_column_ = 0;
// The main status register.
uint8_t status_ = 0;
// Current state of programmer input.
bool write_phase_ = false; // Determines whether the VDP is expecting the low or high byte of a write.
uint8_t low_write_ = 0; // Buffers the low byte of a write.
// Various programmable flags.
bool mode1_enable_ = false;
bool mode2_enable_ = false;
bool mode3_enable_ = false;
bool blank_display_ = false;
bool sprites_16x16_ = false;
bool sprites_magnified_ = false;
bool generate_interrupts_ = false;
int sprite_height_ = 8;
// Programmer-specified addresses.
size_t pattern_name_address_ = 0; // i.e. address of the tile map.
size_t colour_table_address_ = 0; // address of the colour map (if applicable).
size_t pattern_generator_table_address_ = 0; // address of the tile contents.
size_t sprite_attribute_table_address_ = 0; // address of the sprite list.
size_t sprite_generator_table_address_ = 0; // address of the sprite contents.
// Default colours.
uint8_t text_colour_ = 0;
uint8_t background_colour_ = 0;
// Internal mechanisms for position tracking.
int latched_column_ = 0;
// A struct to contain timing information that is a function of the current mode.
struct {
/*
Vertical layout:
Lines 0 to [pixel_lines]: standard data fetch and drawing will occur.
... to [first_vsync_line]: refresh fetches will occur and border will be output.
.. to [2.5 or 3 lines later]: vertical sync is output.
... to [total lines - 1]: refresh fetches will occur and border will be output.
... for one line: standard data fetch will occur, without drawing.
*/
int total_lines = 262;
int pixel_lines = 192;
int first_vsync_line = 227;
// Maximum number of sprite slots to populate;
// if sprites beyond this number should be visible
// then the appropriate status information will be set.
int maximum_visible_sprites = 4;
// Set the position, in cycles, of the two interrupts,
// within a line.
struct {
int column = 4;
int row = 193;
} end_of_frame_interrupt_position;
int line_interrupt_position = -1;
// Enables or disabled the recognition of the sprite
// list terminator, and sets the terminator value.
bool allow_sprite_terminator = true;
uint8_t sprite_terminator = 0xd0;
} mode_timing_;
uint8_t line_interrupt_target = 0xff;
uint8_t line_interrupt_counter = 0;
bool enable_line_interrupts_ = false;
bool line_interrupt_pending_ = false;
ScreenMode screen_mode_;
LineBuffer line_buffers_[313];
void posit_sprite(LineBuffer &buffer, int sprite_number, int sprite_y, int screen_row);
// There is a delay between reading into the line buffer and outputting from there to the screen. That delay
@ -263,9 +250,7 @@ class Base {
// to update sprites and tiles, but writing time affects when the palette is used and when the collision flag
// may end up being set. So the two processes are slightly decoupled. The end of reading one line may overlap
// with the beginning of writing the next, hence the two separate line buffers.
struct LineBufferPointer {
int row, column;
} read_pointer_, write_pointer_;
LineBufferPointer read_pointer_, write_pointer_;
// The SMS VDP has a programmer-set colour palette, with a dedicated patch of RAM. But the RAM is only exactly
// fast enough for the pixel clock. So when the programmer writes to it, that causes a one-pixel glitch; there
@ -301,41 +286,35 @@ class Base {
size_t sprite_generator_table_address;
} master_system_;
void set_current_screen_mode() {
ScreenMode current_screen_mode() const {
if(blank_display_) {
screen_mode_ = ScreenMode::Blank;
return;
return ScreenMode::Blank;
}
if(is_sega_vdp(personality_) && master_system_.mode4_enable) {
screen_mode_ = ScreenMode::SMSMode4;
mode_timing_.maximum_visible_sprites = 8;
return;
if constexpr (is_sega_vdp(personality)) {
if(master_system_.mode4_enable) {
return ScreenMode::SMSMode4;
}
}
mode_timing_.maximum_visible_sprites = 4;
if(!mode1_enable_ && !mode2_enable_ && !mode3_enable_) {
screen_mode_ = ScreenMode::ColouredText;
return;
return ScreenMode::ColouredText;
}
if(mode1_enable_ && !mode2_enable_ && !mode3_enable_) {
screen_mode_ = ScreenMode::Text;
return;
return ScreenMode::Text;
}
if(!mode1_enable_ && mode2_enable_ && !mode3_enable_) {
screen_mode_ = ScreenMode::Graphics;
return;
return ScreenMode::Graphics;
}
if(!mode1_enable_ && !mode2_enable_ && mode3_enable_) {
screen_mode_ = ScreenMode::MultiColour;
return;
return ScreenMode::MultiColour;
}
// TODO: undocumented TMS modes.
screen_mode_ = ScreenMode::Blank;
return ScreenMode::Blank;
}
void do_external_slot(int access_column) {
@ -349,6 +328,7 @@ class Base {
default: return;
case MemoryAccess::Write:
if constexpr (is_sega_vdp(personality)) {
if(master_system_.cram_is_selected) {
// Adjust the palette. In a Master System blue has a slightly different
// scale; cf. https://www.retrorgb.com/sega-master-system-non-linear-blue-channel-findings.html
@ -363,9 +343,7 @@ class Base {
// Schedule a CRAM dot; this is scheduled for wherever it should appear
// on screen. So it's wherever the output stream would be now. Which
// is output_lag cycles ago from the point of view of the input stream.
upcoming_cram_dots_.emplace_back();
CRAMDot &dot = upcoming_cram_dots_.back();
CRAMDot &dot = upcoming_cram_dots_.emplace_back();
dot.location.column = write_pointer_.column - output_lag;
dot.location.row = write_pointer_.row;
@ -379,9 +357,10 @@ class Base {
dot.location.column %= 342;
dot.value = master_system_.colour_ram[ram_pointer_ & 0x1f];
} else {
ram_[ram_pointer_ & 16383] = read_ahead_buffer_;
break;
}
}
ram_[ram_pointer_ & 16383] = read_ahead_buffer_;
break;
case MemoryAccess::Read:
read_ahead_buffer_ = ram_[ram_pointer_ & 16383];
@ -391,472 +370,34 @@ class Base {
queued_access_ = MemoryAccess::None;
}
/*
Fetching routines follow below; they obey the following rules:
// Various fetchers.
template<bool use_end> void fetch_tms_refresh(int start, int end);
template<bool use_end> void fetch_tms_text(int start, int end);
template<bool use_end> void fetch_tms_character(int start, int end);
1) input is a start position and an end position; they should perform the proper
operations for the period: start <= time < end.
2) times are measured relative to a 172-cycles-per-line clock (so: they directly
count access windows on the TMS and Master System).
3) time 0 is the beginning of the access window immediately after the last pattern/data
block fetch that would contribute to this line, in a normal 32-column mode. So:
template<bool use_end> void fetch_yamaha_refresh(int start, int end);
template<bool use_end> void fetch_yamaha_no_sprites(int start, int end);
template<bool use_end> void fetch_yamaha_sprites(int start, int end);
* it's cycle 309 on Mattias' TMS diagram;
* it's cycle 1238 on his V9938 diagram;
* it's after the last background render block in Mask of Destiny's Master System timing diagram.
template<bool use_end> void fetch_sms(int start, int end);
That division point was selected, albeit arbitrarily, because it puts all the tile
fetches for a single line into the same [0, 171] period.
4) all of these functions are templated with a `use_end` parameter. That will be true if
end is < 172, false otherwise. So functions can use it to eliminate should-exit-not checks,
for the more usual path of execution.
Provided for the benefit of the methods below:
* the function external_slot(), which will perform any pending VRAM read/write.
* the macros slot(n) and external_slot(n) which can be used to schedule those things inside a
switch(start)-based implementation.
All functions should just spool data to intermediary storage. This is because for most VDPs there is
a decoupling between fetch pattern and output pattern, and it's neater to keep the same division
for the exceptions.
*/
#define slot(n) \
if(use_end && end == n) return; \
[[fallthrough]]; \
case n
#define external_slot(n) \
slot(n): do_external_slot((n)*2);
#define external_slots_2(n) \
external_slot(n); \
external_slot(n+1);
#define external_slots_4(n) \
external_slots_2(n); \
external_slots_2(n+2);
#define external_slots_8(n) \
external_slots_4(n); \
external_slots_4(n+4);
#define external_slots_16(n) \
external_slots_8(n); \
external_slots_8(n+8);
#define external_slots_32(n) \
external_slots_16(n); \
external_slots_16(n+16);
/***********************************************
TMS9918 Fetching Code
************************************************/
template<bool use_end> void fetch_tms_refresh(int start, int end) {
#define refresh(location) \
slot(location): \
external_slot(location+1);
#define refreshes_2(location) \
refresh(location); \
refresh(location+2);
#define refreshes_4(location) \
refreshes_2(location); \
refreshes_2(location+4);
#define refreshes_8(location) \
refreshes_4(location); \
refreshes_4(location+8);
switch(start) {
default: assert(false);
/* 44 external slots */
external_slots_32(0)
external_slots_8(32)
external_slots_4(40)
/* 64 refresh/external slot pairs (= 128 windows) */
refreshes_8(44);
refreshes_8(60);
refreshes_8(76);
refreshes_8(92);
refreshes_8(108);
refreshes_8(124);
refreshes_8(140);
refreshes_8(156);
return;
}
#undef refreshes_8
#undef refreshes_4
#undef refreshes_2
#undef refresh
}
template<bool use_end> void fetch_tms_text(int start, int end) {
#define fetch_tile_name(location, column) slot(location): line_buffer.names[column].offset = ram_[row_base + column];
#define fetch_tile_pattern(location, column) slot(location): line_buffer.patterns[column][0] = ram_[row_offset + size_t(line_buffer.names[column].offset << 3)];
#define fetch_column(location, column) \
fetch_tile_name(location, column); \
external_slot(location+1); \
fetch_tile_pattern(location+2, column);
#define fetch_columns_2(location, column) \
fetch_column(location, column); \
fetch_column(location+3, column+1);
#define fetch_columns_4(location, column) \
fetch_columns_2(location, column); \
fetch_columns_2(location+6, column+2);
#define fetch_columns_8(location, column) \
fetch_columns_4(location, column); \
fetch_columns_4(location+12, column+4);
LineBuffer &line_buffer = line_buffers_[write_pointer_.row];
const size_t row_base = pattern_name_address_ & (0x3c00 | size_t(write_pointer_.row >> 3) * 40);
const size_t row_offset = pattern_generator_table_address_ & (0x3800 | (write_pointer_.row & 7));
switch(start) {
default: assert(false);
/* 47 external slots (= 47 windows) */
external_slots_32(0)
external_slots_8(32)
external_slots_4(40)
external_slots_2(44)
external_slot(46)
/* 40 column fetches (= 120 windows) */
fetch_columns_8(47, 0);
fetch_columns_8(71, 8);
fetch_columns_8(95, 16);
fetch_columns_8(119, 24);
fetch_columns_8(143, 32);
/* 5 more external slots */
external_slots_4(167);
external_slot(171);
return;
}
#undef fetch_columns_8
#undef fetch_columns_4
#undef fetch_columns_2
#undef fetch_column
#undef fetch_tile_pattern
#undef fetch_tile_name
}
template<bool use_end> void fetch_tms_character(int start, int end) {
#define sprite_fetch_coordinates(location, sprite) \
slot(location): \
slot(location+1): \
line_buffer.active_sprites[sprite].x = \
ram_[\
sprite_attribute_table_address_ & size_t(0x3f81 | (line_buffer.active_sprites[sprite].index << 2))\
];
// This implementation doesn't refetch Y; it's unclear to me
// whether it's refetched.
#define sprite_fetch_graphics(location, sprite) \
slot(location): \
slot(location+1): \
slot(location+2): \
slot(location+3): {\
const uint8_t name = ram_[\
sprite_attribute_table_address_ & size_t(0x3f82 | (line_buffer.active_sprites[sprite].index << 2))\
] & (sprites_16x16_ ? ~3 : ~0);\
line_buffer.active_sprites[sprite].image[2] = ram_[\
sprite_attribute_table_address_ & size_t(0x3f83 | (line_buffer.active_sprites[sprite].index << 2))\
];\
line_buffer.active_sprites[sprite].x -= (line_buffer.active_sprites[sprite].image[2] & 0x80) >> 2;\
const size_t graphic_location = sprite_generator_table_address_ & size_t(0x3800 | (name << 3) | line_buffer.active_sprites[sprite].row); \
line_buffer.active_sprites[sprite].image[0] = ram_[graphic_location];\
line_buffer.active_sprites[sprite].image[1] = ram_[graphic_location+16];\
}
#define sprite_fetch_block(location, sprite) \
sprite_fetch_coordinates(location, sprite) \
sprite_fetch_graphics(location+2, sprite)
#define sprite_y_read(location, sprite) \
slot(location): posit_sprite(sprite_selection_buffer, sprite, ram_[sprite_attribute_table_address_ & (((sprite) << 2) | 0x3f80)], write_pointer_.row);
#define fetch_tile_name(column) line_buffer.names[column].offset = ram_[(row_base + column) & 0x3fff];
#define fetch_tile(column) {\
line_buffer.patterns[column][1] = ram_[(colour_base + size_t((line_buffer.names[column].offset << 3) >> colour_name_shift)) & 0x3fff]; \
line_buffer.patterns[column][0] = ram_[(pattern_base + size_t(line_buffer.names[column].offset << 3)) & 0x3fff]; \
}
#define background_fetch_block(location, column, sprite) \
slot(location): fetch_tile_name(column) \
external_slot(location+1); \
slot(location+2): \
slot(location+3): fetch_tile(column) \
slot(location+4): fetch_tile_name(column+1) \
sprite_y_read(location+5, sprite); \
slot(location+6): \
slot(location+7): fetch_tile(column+1) \
slot(location+8): fetch_tile_name(column+2) \
sprite_y_read(location+9, sprite+1); \
slot(location+10): \
slot(location+11): fetch_tile(column+2) \
slot(location+12): fetch_tile_name(column+3) \
sprite_y_read(location+13, sprite+2); \
slot(location+14): \
slot(location+15): fetch_tile(column+3)
LineBuffer &line_buffer = line_buffers_[write_pointer_.row];
LineBuffer &sprite_selection_buffer = line_buffers_[(write_pointer_.row + 1) % mode_timing_.total_lines];
const size_t row_base = pattern_name_address_ & (size_t((write_pointer_.row << 2)&~31) | 0x3c00);
size_t pattern_base = pattern_generator_table_address_;
size_t colour_base = colour_table_address_;
int colour_name_shift = 6;
if(screen_mode_ == ScreenMode::Graphics) {
// If this is high resolution mode, allow the row number to affect the pattern and colour addresses.
pattern_base &= size_t(0x2000 | ((write_pointer_.row & 0xc0) << 5));
colour_base &= size_t(0x2000 | ((write_pointer_.row & 0xc0) << 5));
colour_base += size_t(write_pointer_.row & 7);
colour_name_shift = 0;
} else {
colour_base &= size_t(0xffc0);
pattern_base &= size_t(0x3800);
}
if(screen_mode_ == ScreenMode::MultiColour) {
pattern_base += size_t((write_pointer_.row >> 2) & 7);
} else {
pattern_base += size_t(write_pointer_.row & 7);
}
switch(start) {
default: assert(false);
external_slots_2(0);
sprite_fetch_block(2, 0);
sprite_fetch_block(8, 1);
sprite_fetch_coordinates(14, 2);
external_slots_4(16);
external_slot(20);
sprite_fetch_graphics(21, 2);
sprite_fetch_block(25, 3);
slot(31):
sprite_selection_buffer.reset_sprite_collection();
do_external_slot(31*2);
external_slots_2(32);
external_slot(34);
sprite_y_read(35, 0);
sprite_y_read(36, 1);
sprite_y_read(37, 2);
sprite_y_read(38, 3);
sprite_y_read(39, 4);
sprite_y_read(40, 5);
sprite_y_read(41, 6);
sprite_y_read(42, 7);
background_fetch_block(43, 0, 8);
background_fetch_block(59, 4, 11);
background_fetch_block(75, 8, 14);
background_fetch_block(91, 12, 17);
background_fetch_block(107, 16, 20);
background_fetch_block(123, 20, 23);
background_fetch_block(139, 24, 26);
background_fetch_block(155, 28, 29);
return;
}
#undef background_fetch_block
#undef fetch_tile
#undef fetch_tile_name
#undef sprite_y_read
#undef sprite_fetch_block
#undef sprite_fetch_graphics
#undef sprite_fetch_coordinates
}
/***********************************************
Master System Fetching Code
************************************************/
template<bool use_end> void fetch_sms(int start, int end) {
#define sprite_fetch(sprite) {\
line_buffer.active_sprites[sprite].x = \
ram_[\
master_system_.sprite_attribute_table_address & size_t(0x3f80 | (line_buffer.active_sprites[sprite].index << 1))\
] - (master_system_.shift_sprites_8px_left ? 8 : 0); \
const uint8_t name = ram_[\
master_system_.sprite_attribute_table_address & size_t(0x3f81 | (line_buffer.active_sprites[sprite].index << 1))\
] & (sprites_16x16_ ? ~1 : ~0);\
const size_t graphic_location = master_system_.sprite_generator_table_address & size_t(0x2000 | (name << 5) | (line_buffer.active_sprites[sprite].row << 2)); \
line_buffer.active_sprites[sprite].image[0] = ram_[graphic_location]; \
line_buffer.active_sprites[sprite].image[1] = ram_[graphic_location+1]; \
line_buffer.active_sprites[sprite].image[2] = ram_[graphic_location+2]; \
line_buffer.active_sprites[sprite].image[3] = ram_[graphic_location+3]; \
}
#define sprite_fetch_block(location, sprite) \
slot(location): \
slot(location+1): \
slot(location+2): \
slot(location+3): \
slot(location+4): \
slot(location+5): \
sprite_fetch(sprite);\
sprite_fetch(sprite+1);
#define sprite_y_read(location, sprite) \
slot(location): \
posit_sprite(sprite_selection_buffer, sprite, ram_[master_system_.sprite_attribute_table_address & ((sprite) | 0x3f00)], write_pointer_.row); \
posit_sprite(sprite_selection_buffer, sprite+1, ram_[master_system_.sprite_attribute_table_address & ((sprite + 1) | 0x3f00)], write_pointer_.row); \
#define fetch_tile_name(column, row_info) {\
const size_t scrolled_column = (column - horizontal_offset) & 0x1f;\
const size_t address = row_info.pattern_address_base + (scrolled_column << 1); \
line_buffer.names[column].flags = ram_[address+1]; \
line_buffer.names[column].offset = size_t( \
(((line_buffer.names[column].flags&1) << 8) | ram_[address]) << 5 \
) + row_info.sub_row[(line_buffer.names[column].flags&4) >> 2]; \
}
#define fetch_tile(column) \
line_buffer.patterns[column][0] = ram_[line_buffer.names[column].offset]; \
line_buffer.patterns[column][1] = ram_[line_buffer.names[column].offset+1]; \
line_buffer.patterns[column][2] = ram_[line_buffer.names[column].offset+2]; \
line_buffer.patterns[column][3] = ram_[line_buffer.names[column].offset+3];
#define background_fetch_block(location, column, sprite, row_info) \
slot(location): fetch_tile_name(column, row_info) \
external_slot(location+1); \
slot(location+2): \
slot(location+3): \
slot(location+4): \
fetch_tile(column) \
fetch_tile_name(column+1, row_info) \
sprite_y_read(location+5, sprite); \
slot(location+6): \
slot(location+7): \
slot(location+8): \
fetch_tile(column+1) \
fetch_tile_name(column+2, row_info) \
sprite_y_read(location+9, sprite+2); \
slot(location+10): \
slot(location+11): \
slot(location+12): \
fetch_tile(column+2) \
fetch_tile_name(column+3, row_info) \
sprite_y_read(location+13, sprite+4); \
slot(location+14): \
slot(location+15): fetch_tile(column+3)
// Determine the coarse horizontal scrolling offset; this isn't applied on the first two lines if the programmer has requested it.
LineBuffer &line_buffer = line_buffers_[write_pointer_.row];
LineBuffer &sprite_selection_buffer = line_buffers_[(write_pointer_.row + 1) % mode_timing_.total_lines];
const int horizontal_offset = (write_pointer_.row >= 16 || !master_system_.horizontal_scroll_lock) ? (line_buffer.latched_horizontal_scroll >> 3) : 0;
// Limit address bits in use if this is a SMS2 mode.
const bool is_tall_mode = mode_timing_.pixel_lines != 192;
const size_t pattern_name_address = master_system_.pattern_name_address | (is_tall_mode ? 0x800 : 0);
const size_t pattern_name_offset = is_tall_mode ? 0x100 : 0;
// Determine row info for the screen both (i) if vertical scrolling is applied; and (ii) if it isn't.
// The programmer can opt out of applying vertical scrolling to the right-hand portion of the display.
const int scrolled_row = (write_pointer_.row + master_system_.latched_vertical_scroll) % (is_tall_mode ? 256 : 224);
struct RowInfo {
size_t pattern_address_base;
size_t sub_row[2];
};
const RowInfo scrolled_row_info = {
(pattern_name_address & size_t(((scrolled_row & ~7) << 3) | 0x3800)) - pattern_name_offset,
{size_t((scrolled_row & 7) << 2), 28 ^ size_t((scrolled_row & 7) << 2)}
};
RowInfo row_info;
if(master_system_.vertical_scroll_lock) {
row_info.pattern_address_base = (pattern_name_address & size_t(((write_pointer_.row & ~7) << 3) | 0x3800)) - pattern_name_offset;
row_info.sub_row[0] = size_t((write_pointer_.row & 7) << 2);
row_info.sub_row[1] = 28 ^ size_t((write_pointer_.row & 7) << 2);
} else row_info = scrolled_row_info;
// ... and do the actual fetching, which follows this routine:
switch(start) {
default: assert(false);
sprite_fetch_block(0, 0);
sprite_fetch_block(6, 2);
external_slots_4(12);
external_slot(16);
sprite_fetch_block(17, 4);
sprite_fetch_block(23, 6);
slot(29):
sprite_selection_buffer.reset_sprite_collection();
do_external_slot(29*2);
external_slot(30);
sprite_y_read(31, 0);
sprite_y_read(32, 2);
sprite_y_read(33, 4);
sprite_y_read(34, 6);
sprite_y_read(35, 8);
sprite_y_read(36, 10);
sprite_y_read(37, 12);
sprite_y_read(38, 14);
background_fetch_block(39, 0, 16, scrolled_row_info);
background_fetch_block(55, 4, 22, scrolled_row_info);
background_fetch_block(71, 8, 28, scrolled_row_info);
background_fetch_block(87, 12, 34, scrolled_row_info);
background_fetch_block(103, 16, 40, scrolled_row_info);
background_fetch_block(119, 20, 46, scrolled_row_info);
background_fetch_block(135, 24, 52, row_info);
background_fetch_block(151, 28, 58, row_info);
external_slots_4(167);
return;
}
#undef background_fetch_block
#undef fetch_tile
#undef fetch_tile_name
#undef sprite_y_read
#undef sprite_fetch_block
#undef sprite_fetch
}
#undef external_slot
#undef slot
// A helper function to output the current border colour for
// the number of cycles supplied.
void output_border(int cycles, uint32_t cram_dot);
// Output serialisation state.
uint32_t *pixel_target_ = nullptr, *pixel_origin_ = nullptr;
bool asked_for_write_area_ = false;
// Output serialisers.
void draw_tms_character(int start, int end);
void draw_tms_text(int start, int end);
void draw_sms(int start, int end, uint32_t cram_dot);
};
#include "Fetch.hpp"
#include "Draw.hpp"
}
}

View File

@ -0,0 +1,180 @@
//
// ClockConverter.hpp
// Clock Signal
//
// Created by Thomas Harte on 01/01/2023.
// Copyright © 2023 Thomas Harte. All rights reserved.
//
#ifndef ClockConverter_hpp
#define ClockConverter_hpp
#include "../9918.hpp"
#include "PersonalityTraits.hpp"
namespace TI {
namespace TMS {
enum class Clock {
Internal,
TMSPixel,
TMSMemoryWindow,
CRT
};
template <Personality personality, Clock clk> constexpr int clock_rate() {
static_assert(
is_classic_vdp(personality) ||
is_yamaha_vdp(personality) ||
(personality == Personality::MDVDP)
);
switch(clk) {
case Clock::TMSPixel: return 342;
case Clock::TMSMemoryWindow: return 171;
case Clock::CRT: return 1368;
case Clock::Internal:
if constexpr (is_classic_vdp(personality)) {
return 342;
} else if constexpr (is_yamaha_vdp(personality)) {
return 1368;
} else if constexpr (personality == Personality::MDVDP) {
return 3420;
}
}
}
template <Personality personality, Clock clock> constexpr int to_internal(int length) {
return length * clock_rate<personality, Clock::Internal>() / clock_rate<personality, clock>();
}
template <Personality personality, Clock clock> constexpr int from_internal(int length) {
return length * clock_rate<personality, clock>() / clock_rate<personality, Clock::Internal>();
}
/// Provides default timing measurements that duplicate the layout of a TMS9928's line,
/// scaled to the clock rate specified.
template <Personality personality> struct StandardTiming {
/// The total number of internal cycles per line of output.
constexpr static int CyclesPerLine = clock_rate<personality, Clock::Internal>();
/// The number of internal cycles that must elapse between a request to read or write and
/// it becoming a candidate for action.
constexpr static int VRAMAccessDelay = 6;
/// The first internal cycle at which pixels will be output in any mode other than text.
/// Pixels implicitly run from here to the end of the line.
constexpr static int FirstPixelCycle = 86 * CyclesPerLine / 342;
/// The first internal cycle at which pixels will be output text mode.
constexpr static int FirstTextCycle = 94 * CyclesPerLine / 342;
/// The final internal cycle at which pixels will be output text mode.
constexpr static int LastTextCycle = 334 * CyclesPerLine / 342;
// For the below, the fixed portion of line layout is:
//
// [0, EndOfRightBorder): right border colour
// [EndOfRightBorder, StartOfSync): blank
// [StartOfSync, EndOfSync): sync
// [EndOfSync, StartOfColourBurst): blank
// [StartOfColourBurst, EndOfColourBurst): the colour burst
// [EndOfColourBurst, StartOfLeftBorder): blank
//
// The region from StartOfLeftBorder until the end is then filled with
// some combination of pixels and more border, depending on the vertical
// position of this line and the current screen mode.
constexpr static int EndOfRightBorder = 15 * CyclesPerLine / 342;
constexpr static int StartOfSync = 23 * CyclesPerLine / 342;
constexpr static int EndOfSync = 49 * CyclesPerLine / 342;
constexpr static int StartOfColourBurst = 51 * CyclesPerLine / 342;
constexpr static int EndOfColourBurst = 65 * CyclesPerLine / 342;
constexpr static int StartOfLeftBorder = 73 * CyclesPerLine / 342;
};
/// Provides concrete, specific timing for the nominated personality.
template <Personality personality> struct Timing: public StandardTiming<personality> {};
/*!
Provides a [potentially-]stateful conversion between the external and internal clocks.
Unlike the other clock conversions, this one may be non-integral, requiring that
an error term be tracked.
*/
template <Personality personality> class ClockConverter {
public:
/*!
Given that another @c source external **half-cycles** has occurred,
indicates how many complete internal **cycles** have additionally elapsed
since the last call to @c to_internal.
E.g. for the TMS, @c source will count 456 ticks per line, and the internal clock
runs at 342 ticks per line, so the proper conversion is to multiply by 3/4.
*/
int to_internal(int source) {
switch(personality) {
// Default behaviour is to apply a multiplication by 3/4;
// this is correct for the TMS and Sega VDPs other than the Mega Drive.
default: {
const int result = source * 3 + cycles_error_;
cycles_error_ = result & 3;
return result >> 2;
}
// The two Yamaha chips have an internal clock that is four times
// as fast as the TMS, therefore a stateless translation is possible.
case Personality::V9938:
case Personality::V9958:
return source * 3;
// The Mega Drive runs at 3420 master clocks per line, which is then
// divided by 4 or 5 depending on other state. That's 7 times the
// rate provided to the CPU; given that the input is in half-cycles
// the proper multiplier is therefore 3.5.
case Personality::MDVDP: {
const int result = source * 7 + cycles_error_;
cycles_error_ = result & 1;
return result >> 1;
}
}
}
/*!
Provides the number of external cycles that need to begin from now in order to
get at least @c internal_cycles into the future.
*/
HalfCycles half_cycles_before_internal_cycles(int internal_cycles) const {
// Logic here correlates with multipliers as per @c to_internal.
switch(personality) {
default:
// Relative to the external clock multiplied by 3, it will definitely take this
// many cycles to complete a further (internal_cycles - 1) after the current one.
internal_cycles = (internal_cycles - 1) << 2;
// It will also be necessary to complete the current one.
internal_cycles += 4 - cycles_error_;
// Round up to get the first external cycle after
// the number of internal_cycles has elapsed.
return HalfCycles((internal_cycles + 2) / 3);
case Personality::V9938:
case Personality::V9958:
return HalfCycles((internal_cycles + 2) / 3);
case Personality::MDVDP:
internal_cycles = (internal_cycles - 1) << 1;
internal_cycles += 2 - cycles_error_;
return HalfCycles((internal_cycles + 6) / 7);
}
}
private:
// Holds current residue in conversion from the external to
// internal clock.
int cycles_error_ = 0;
};
}
}
#endif /* ClockConverter_hpp */

View File

@ -0,0 +1,293 @@
//
// Draw.hpp
// Clock Signal
//
// Created by Thomas Harte on 05/01/2023.
// Copyright © 2023 Thomas Harte. All rights reserved.
//
#ifndef Draw_hpp
#define Draw_hpp
// MARK: - TMS9918
template <Personality personality>
void Base<personality>::draw_tms_character(int start, int end) {
LineBuffer &line_buffer = line_buffers_[read_pointer_.row];
// Paint the background tiles.
const int pixels_left = end - start;
if(this->screen_mode_ == ScreenMode::MultiColour) {
for(int c = start; c < end; ++c) {
pixel_target_[c] = palette[
(line_buffer.patterns[c >> 3][0] >> (((c & 4)^4))) & 15
];
}
} else {
const int shift = start & 7;
int byte_column = start >> 3;
int length = std::min(pixels_left, 8 - shift);
int pattern = Numeric::bit_reverse(line_buffer.patterns[byte_column][0]) >> shift;
uint8_t colour = line_buffer.patterns[byte_column][1];
uint32_t colours[2] = {
palette[(colour & 15) ? (colour & 15) : background_colour_],
palette[(colour >> 4) ? (colour >> 4) : background_colour_]
};
int background_pixels_left = pixels_left;
while(true) {
background_pixels_left -= length;
for(int c = 0; c < length; ++c) {
pixel_target_[c] = colours[pattern&0x01];
pattern >>= 1;
}
pixel_target_ += length;
if(!background_pixels_left) break;
length = std::min(8, background_pixels_left);
byte_column++;
pattern = Numeric::bit_reverse(line_buffer.patterns[byte_column][0]);
colour = line_buffer.patterns[byte_column][1];
colours[0] = palette[(colour & 15) ? (colour & 15) : background_colour_];
colours[1] = palette[(colour >> 4) ? (colour >> 4) : background_colour_];
}
}
// Paint sprites and check for collisions, but only if at least one sprite is active
// on this line.
if(line_buffer.active_sprite_slot) {
const int shift_advance = sprites_magnified_ ? 1 : 2;
// If this is the start of the line clip any part of any sprites that is off to the left.
if(!start) {
for(int index = 0; index < line_buffer.active_sprite_slot; ++index) {
LineBuffer::ActiveSprite &sprite = line_buffer.active_sprites[index];
if(sprite.x < 0) sprite.shift_position -= shift_advance * sprite.x;
}
}
int sprite_buffer[256];
int sprite_collision = 0;
memset(&sprite_buffer[start], 0, size_t(end - start)*sizeof(sprite_buffer[0]));
constexpr uint32_t sprite_colour_selection_masks[2] = {0x00000000, 0xffffffff};
constexpr int colour_masks[16] = {0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1};
// Draw all sprites into the sprite buffer.
const int shifter_target = sprites_16x16_ ? 32 : 16;
for(int index = line_buffer.active_sprite_slot - 1; index >= 0; --index) {
LineBuffer::ActiveSprite &sprite = line_buffer.active_sprites[index];
if(sprite.shift_position < shifter_target) {
const int pixel_start = std::max(start, sprite.x);
for(int c = pixel_start; c < end && sprite.shift_position < shifter_target; ++c) {
const int shift = (sprite.shift_position >> 1) ^ 7;
int sprite_colour = (sprite.image[shift >> 3] >> (shift & 7)) & 1;
// A colision is detected regardless of sprite colour ...
sprite_collision |= sprite_buffer[c] & sprite_colour;
sprite_buffer[c] |= sprite_colour;
// ... but a sprite with the transparent colour won't actually be visible.
sprite_colour &= colour_masks[sprite.image[2]&15];
pixel_origin_[c] =
(pixel_origin_[c] & sprite_colour_selection_masks[sprite_colour^1]) |
(palette[sprite.image[2]&15] & sprite_colour_selection_masks[sprite_colour]);
sprite.shift_position += shift_advance;
}
}
}
status_ |= sprite_collision << StatusSpriteCollisionShift;
}
}
template <Personality personality>
void Base<personality>::draw_tms_text(int start, int end) {
LineBuffer &line_buffer = line_buffers_[read_pointer_.row];
const uint32_t colours[2] = { palette[background_colour_], palette[text_colour_] };
const int shift = start % 6;
int byte_column = start / 6;
int pattern = Numeric::bit_reverse(line_buffer.patterns[byte_column][0]) >> shift;
int pixels_left = end - start;
int length = std::min(pixels_left, 6 - shift);
while(true) {
pixels_left -= length;
for(int c = 0; c < length; ++c) {
pixel_target_[c] = colours[pattern&0x01];
pattern >>= 1;
}
pixel_target_ += length;
if(!pixels_left) break;
length = std::min(6, pixels_left);
byte_column++;
pattern = Numeric::bit_reverse(line_buffer.patterns[byte_column][0]);
}
}
// MARK: - Master System
template <Personality personality>
void Base<personality>::draw_sms(int start, int end, uint32_t cram_dot) {
LineBuffer &line_buffer = line_buffers_[read_pointer_.row];
int colour_buffer[256];
/*
Add extra border for any pixels that fall before the fine scroll.
*/
int tile_start = start, tile_end = end;
int tile_offset = start;
if(read_pointer_.row >= 16 || !master_system_.horizontal_scroll_lock) {
for(int c = start; c < (line_buffer.latched_horizontal_scroll & 7); ++c) {
colour_buffer[c] = 16 + background_colour_;
++tile_offset;
}
// Remove the border area from that to which tiles will be drawn.
tile_start = std::max(start - (line_buffer.latched_horizontal_scroll & 7), 0);
tile_end = std::max(end - (line_buffer.latched_horizontal_scroll & 7), 0);
}
uint32_t pattern;
uint8_t *const pattern_index = reinterpret_cast<uint8_t *>(&pattern);
/*
Add background tiles; these will fill the colour_buffer with values in which
the low five bits are a palette index, and bit six is set if this tile has
priority over sprites.
*/
if(tile_start < end) {
const int shift = tile_start & 7;
int byte_column = tile_start >> 3;
int pixels_left = tile_end - tile_start;
int length = std::min(pixels_left, 8 - shift);
pattern = *reinterpret_cast<const uint32_t *>(line_buffer.patterns[byte_column]);
if(line_buffer.names[byte_column].flags&2)
pattern >>= shift;
else
pattern <<= shift;
while(true) {
const int palette_offset = (line_buffer.names[byte_column].flags&0x18) << 1;
if(line_buffer.names[byte_column].flags&2) {
for(int c = 0; c < length; ++c) {
colour_buffer[tile_offset] =
((pattern_index[3] & 0x01) << 3) |
((pattern_index[2] & 0x01) << 2) |
((pattern_index[1] & 0x01) << 1) |
((pattern_index[0] & 0x01) << 0) |
palette_offset;
++tile_offset;
pattern >>= 1;
}
} else {
for(int c = 0; c < length; ++c) {
colour_buffer[tile_offset] =
((pattern_index[3] & 0x80) >> 4) |
((pattern_index[2] & 0x80) >> 5) |
((pattern_index[1] & 0x80) >> 6) |
((pattern_index[0] & 0x80) >> 7) |
palette_offset;
++tile_offset;
pattern <<= 1;
}
}
pixels_left -= length;
if(!pixels_left) break;
length = std::min(8, pixels_left);
byte_column++;
pattern = *reinterpret_cast<const uint32_t *>(line_buffer.patterns[byte_column]);
}
}
/*
Apply sprites (if any).
*/
if(line_buffer.active_sprite_slot) {
const int shift_advance = sprites_magnified_ ? 1 : 2;
// If this is the start of the line clip any part of any sprites that is off to the left.
if(!start) {
for(int index = 0; index < line_buffer.active_sprite_slot; ++index) {
LineBuffer::ActiveSprite &sprite = line_buffer.active_sprites[index];
if(sprite.x < 0) sprite.shift_position -= shift_advance * sprite.x;
}
}
int sprite_buffer[256];
int sprite_collision = 0;
memset(&sprite_buffer[start], 0, size_t(end - start)*sizeof(sprite_buffer[0]));
// Draw all sprites into the sprite buffer.
for(int index = line_buffer.active_sprite_slot - 1; index >= 0; --index) {
LineBuffer::ActiveSprite &sprite = line_buffer.active_sprites[index];
if(sprite.shift_position < 16) {
const int pixel_start = std::max(start, sprite.x);
// TODO: it feels like the work below should be simplifiable;
// the double shift in particular, and hopefully the variable shift.
for(int c = pixel_start; c < end && sprite.shift_position < 16; ++c) {
const int shift = (sprite.shift_position >> 1);
const int sprite_colour =
(((sprite.image[3] << shift) & 0x80) >> 4) |
(((sprite.image[2] << shift) & 0x80) >> 5) |
(((sprite.image[1] << shift) & 0x80) >> 6) |
(((sprite.image[0] << shift) & 0x80) >> 7);
if(sprite_colour) {
sprite_collision |= sprite_buffer[c];
sprite_buffer[c] = sprite_colour | 0x10;
}
sprite.shift_position += shift_advance;
}
}
}
// Draw the sprite buffer onto the colour buffer, wherever the tile map doesn't have
// priority (or is transparent).
for(int c = start; c < end; ++c) {
if(
sprite_buffer[c] &&
(!(colour_buffer[c]&0x20) || !(colour_buffer[c]&0xf))
) colour_buffer[c] = sprite_buffer[c];
}
if(sprite_collision)
status_ |= StatusSpriteCollision;
}
// Map from the 32-colour buffer to real output pixels, applying the specific CRAM dot if any.
pixel_target_[start] = master_system_.colour_ram[colour_buffer[start] & 0x1f] | cram_dot;
for(int c = start+1; c < end; ++c) {
pixel_target_[c] = master_system_.colour_ram[colour_buffer[c] & 0x1f];
}
// If the VDP is set to hide the left column and this is the final call that'll come
// this line, hide it.
if(end == 256) {
if(master_system_.hide_left_column) {
pixel_origin_[0] = pixel_origin_[1] = pixel_origin_[2] = pixel_origin_[3] =
pixel_origin_[4] = pixel_origin_[5] = pixel_origin_[6] = pixel_origin_[7] =
master_system_.colour_ram[16 + background_colour_];
}
}
}
// MARK: - Yamaha
// TODO.
// MARK: - Mega Drive
// TODO.
#endif /* Draw_hpp */

View File

@ -0,0 +1,497 @@
//
// Fetch.hpp
// Clock Signal
//
// Created by Thomas Harte on 01/01/2023.
// Copyright © 2023 Thomas Harte. All rights reserved.
//
#ifndef Fetch_hpp
#define Fetch_hpp
/*
Fetching routines follow below; they obey the following rules:
1) input is a start position and an end position; they should perform the proper
operations for the period: start <= time < end.
2) times are measured relative to a 172-cycles-per-line clock (so: they directly
count access windows on the TMS and Master System).
3) time 0 is the beginning of the access window immediately after the last pattern/data
block fetch that would contribute to this line, in a normal 32-column mode. So:
* it's cycle 309 on Mattias' TMS diagram;
* it's cycle 1238 on his V9938 diagram;
* it's after the last background render block in Mask of Destiny's Master System timing diagram.
That division point was selected, albeit arbitrarily, because it puts all the tile
fetches for a single line into the same [0, 171] period.
4) all of these functions are templated with a `use_end` parameter. That will be true if
end is < 172, false otherwise. So functions can use it to eliminate should-exit-not checks,
for the more usual path of execution.
Provided for the benefit of the methods below:
* the function external_slot(), which will perform any pending VRAM read/write.
* the macros slot(n) and external_slot(n) which can be used to schedule those things inside a
switch(start)-based implementation.
All functions should just spool data to intermediary storage. This is because for most VDPs there is
a decoupling between fetch pattern and output pattern, and it's neater to keep the same division
for the exceptions.
*/
#define slot(n) \
if(use_end && end == n) return; \
[[fallthrough]]; \
case n
#define external_slot(n) \
slot(n): do_external_slot(to_internal<personality, Clock::TMSMemoryWindow>(n));
#define external_slots_2(n) \
external_slot(n); \
external_slot(n+1);
#define external_slots_4(n) \
external_slots_2(n); \
external_slots_2(n+2);
#define external_slots_8(n) \
external_slots_4(n); \
external_slots_4(n+4);
#define external_slots_16(n) \
external_slots_8(n); \
external_slots_8(n+8);
#define external_slots_32(n) \
external_slots_16(n); \
external_slots_16(n+16);
// MARK: - TMS9918
template <Personality personality>
template<bool use_end> void Base<personality>::fetch_tms_refresh(int start, int end) {
#define refresh(location) \
slot(location): \
external_slot(location+1);
#define refreshes_2(location) \
refresh(location); \
refresh(location+2);
#define refreshes_4(location) \
refreshes_2(location); \
refreshes_2(location+4);
#define refreshes_8(location) \
refreshes_4(location); \
refreshes_4(location+8);
switch(start) {
default: assert(false);
/* 44 external slots */
external_slots_32(0)
external_slots_8(32)
external_slots_4(40)
/* 64 refresh/external slot pairs (= 128 windows) */
refreshes_8(44);
refreshes_8(60);
refreshes_8(76);
refreshes_8(92);
refreshes_8(108);
refreshes_8(124);
refreshes_8(140);
refreshes_8(156);
return;
}
#undef refreshes_8
#undef refreshes_4
#undef refreshes_2
#undef refresh
}
template <Personality personality>
template<bool use_end> void Base<personality>::fetch_tms_text(int start, int end) {
#define fetch_tile_name(location, column) slot(location): line_buffer.names[column].offset = ram_[row_base + column];
#define fetch_tile_pattern(location, column) slot(location): line_buffer.patterns[column][0] = ram_[row_offset + size_t(line_buffer.names[column].offset << 3)];
#define fetch_column(location, column) \
fetch_tile_name(location, column); \
external_slot(location+1); \
fetch_tile_pattern(location+2, column);
#define fetch_columns_2(location, column) \
fetch_column(location, column); \
fetch_column(location+3, column+1);
#define fetch_columns_4(location, column) \
fetch_columns_2(location, column); \
fetch_columns_2(location+6, column+2);
#define fetch_columns_8(location, column) \
fetch_columns_4(location, column); \
fetch_columns_4(location+12, column+4);
LineBuffer &line_buffer = line_buffers_[write_pointer_.row];
const size_t row_base = pattern_name_address_ & (0x3c00 | size_t(write_pointer_.row >> 3) * 40);
const size_t row_offset = pattern_generator_table_address_ & (0x3800 | (write_pointer_.row & 7));
switch(start) {
default: assert(false);
/* 47 external slots (= 47 windows) */
external_slots_32(0)
external_slots_8(32)
external_slots_4(40)
external_slots_2(44)
external_slot(46)
/* 40 column fetches (= 120 windows) */
fetch_columns_8(47, 0);
fetch_columns_8(71, 8);
fetch_columns_8(95, 16);
fetch_columns_8(119, 24);
fetch_columns_8(143, 32);
/* 5 more external slots */
external_slots_4(167);
external_slot(171);
return;
}
#undef fetch_columns_8
#undef fetch_columns_4
#undef fetch_columns_2
#undef fetch_column
#undef fetch_tile_pattern
#undef fetch_tile_name
}
template <Personality personality>
template<bool use_end> void Base<personality>::fetch_tms_character(int start, int end) {
#define sprite_fetch_coordinates(location, sprite) \
slot(location): \
slot(location+1): \
line_buffer.active_sprites[sprite].x = \
ram_[\
sprite_attribute_table_address_ & size_t(0x3f81 | (line_buffer.active_sprites[sprite].index << 2))\
];
// This implementation doesn't refetch Y; it's unclear to me
// whether it's refetched.
#define sprite_fetch_graphics(location, sprite) \
slot(location): \
slot(location+1): \
slot(location+2): \
slot(location+3): {\
const uint8_t name = ram_[\
sprite_attribute_table_address_ & size_t(0x3f82 | (line_buffer.active_sprites[sprite].index << 2))\
] & (sprites_16x16_ ? ~3 : ~0);\
line_buffer.active_sprites[sprite].image[2] = ram_[\
sprite_attribute_table_address_ & size_t(0x3f83 | (line_buffer.active_sprites[sprite].index << 2))\
];\
line_buffer.active_sprites[sprite].x -= (line_buffer.active_sprites[sprite].image[2] & 0x80) >> 2;\
const size_t graphic_location = sprite_generator_table_address_ & size_t(0x3800 | (name << 3) | line_buffer.active_sprites[sprite].row); \
line_buffer.active_sprites[sprite].image[0] = ram_[graphic_location];\
line_buffer.active_sprites[sprite].image[1] = ram_[graphic_location+16];\
}
#define sprite_fetch_block(location, sprite) \
sprite_fetch_coordinates(location, sprite) \
sprite_fetch_graphics(location+2, sprite)
#define sprite_y_read(location, sprite) \
slot(location): posit_sprite(sprite_selection_buffer, sprite, ram_[sprite_attribute_table_address_ & (((sprite) << 2) | 0x3f80)], write_pointer_.row);
#define fetch_tile_name(column) line_buffer.names[column].offset = ram_[(row_base + column) & 0x3fff];
#define fetch_tile(column) {\
line_buffer.patterns[column][1] = ram_[(colour_base + size_t((line_buffer.names[column].offset << 3) >> colour_name_shift)) & 0x3fff]; \
line_buffer.patterns[column][0] = ram_[(pattern_base + size_t(line_buffer.names[column].offset << 3)) & 0x3fff]; \
}
#define background_fetch_block(location, column, sprite) \
slot(location): fetch_tile_name(column) \
external_slot(location+1); \
slot(location+2): \
slot(location+3): fetch_tile(column) \
slot(location+4): fetch_tile_name(column+1) \
sprite_y_read(location+5, sprite); \
slot(location+6): \
slot(location+7): fetch_tile(column+1) \
slot(location+8): fetch_tile_name(column+2) \
sprite_y_read(location+9, sprite+1); \
slot(location+10): \
slot(location+11): fetch_tile(column+2) \
slot(location+12): fetch_tile_name(column+3) \
sprite_y_read(location+13, sprite+2); \
slot(location+14): \
slot(location+15): fetch_tile(column+3)
LineBuffer &line_buffer = line_buffers_[write_pointer_.row];
LineBuffer &sprite_selection_buffer = line_buffers_[(write_pointer_.row + 1) % mode_timing_.total_lines];
const size_t row_base = pattern_name_address_ & (size_t((write_pointer_.row << 2)&~31) | 0x3c00);
size_t pattern_base = pattern_generator_table_address_;
size_t colour_base = colour_table_address_;
int colour_name_shift = 6;
if(screen_mode_ == ScreenMode::Graphics) {
// If this is high resolution mode, allow the row number to affect the pattern and colour addresses.
pattern_base &= size_t(0x2000 | ((write_pointer_.row & 0xc0) << 5));
colour_base &= size_t(0x2000 | ((write_pointer_.row & 0xc0) << 5));
colour_base += size_t(write_pointer_.row & 7);
colour_name_shift = 0;
} else {
colour_base &= size_t(0xffc0);
pattern_base &= size_t(0x3800);
}
if(screen_mode_ == ScreenMode::MultiColour) {
pattern_base += size_t((write_pointer_.row >> 2) & 7);
} else {
pattern_base += size_t(write_pointer_.row & 7);
}
switch(start) {
default: assert(false);
external_slots_2(0);
sprite_fetch_block(2, 0);
sprite_fetch_block(8, 1);
sprite_fetch_coordinates(14, 2);
external_slots_4(16);
external_slot(20);
sprite_fetch_graphics(21, 2);
sprite_fetch_block(25, 3);
slot(31):
sprite_selection_buffer.reset_sprite_collection();
do_external_slot(to_internal<personality, Clock::TMSMemoryWindow>(31));
external_slots_2(32);
external_slot(34);
sprite_y_read(35, 0);
sprite_y_read(36, 1);
sprite_y_read(37, 2);
sprite_y_read(38, 3);
sprite_y_read(39, 4);
sprite_y_read(40, 5);
sprite_y_read(41, 6);
sprite_y_read(42, 7);
background_fetch_block(43, 0, 8);
background_fetch_block(59, 4, 11);
background_fetch_block(75, 8, 14);
background_fetch_block(91, 12, 17);
background_fetch_block(107, 16, 20);
background_fetch_block(123, 20, 23);
background_fetch_block(139, 24, 26);
background_fetch_block(155, 28, 29);
return;
}
#undef background_fetch_block
#undef fetch_tile
#undef fetch_tile_name
#undef sprite_y_read
#undef sprite_fetch_block
#undef sprite_fetch_graphics
#undef sprite_fetch_coordinates
}
// MARK: - Master System
template <Personality personality>
template<bool use_end> void Base<personality>::fetch_sms(int start, int end) {
#define sprite_fetch(sprite) {\
line_buffer.active_sprites[sprite].x = \
ram_[\
master_system_.sprite_attribute_table_address & size_t(0x3f80 | (line_buffer.active_sprites[sprite].index << 1))\
] - (master_system_.shift_sprites_8px_left ? 8 : 0); \
const uint8_t name = ram_[\
master_system_.sprite_attribute_table_address & size_t(0x3f81 | (line_buffer.active_sprites[sprite].index << 1))\
] & (sprites_16x16_ ? ~1 : ~0);\
const size_t graphic_location = master_system_.sprite_generator_table_address & size_t(0x2000 | (name << 5) | (line_buffer.active_sprites[sprite].row << 2)); \
line_buffer.active_sprites[sprite].image[0] = ram_[graphic_location]; \
line_buffer.active_sprites[sprite].image[1] = ram_[graphic_location+1]; \
line_buffer.active_sprites[sprite].image[2] = ram_[graphic_location+2]; \
line_buffer.active_sprites[sprite].image[3] = ram_[graphic_location+3]; \
}
#define sprite_fetch_block(location, sprite) \
slot(location): \
slot(location+1): \
slot(location+2): \
slot(location+3): \
slot(location+4): \
slot(location+5): \
sprite_fetch(sprite);\
sprite_fetch(sprite+1);
#define sprite_y_read(location, sprite) \
slot(location): \
posit_sprite(sprite_selection_buffer, sprite, ram_[master_system_.sprite_attribute_table_address & ((sprite) | 0x3f00)], write_pointer_.row); \
posit_sprite(sprite_selection_buffer, sprite+1, ram_[master_system_.sprite_attribute_table_address & ((sprite + 1) | 0x3f00)], write_pointer_.row); \
#define fetch_tile_name(column, row_info) {\
const size_t scrolled_column = (column - horizontal_offset) & 0x1f;\
const size_t address = row_info.pattern_address_base + (scrolled_column << 1); \
line_buffer.names[column].flags = ram_[address+1]; \
line_buffer.names[column].offset = size_t( \
(((line_buffer.names[column].flags&1) << 8) | ram_[address]) << 5 \
) + row_info.sub_row[(line_buffer.names[column].flags&4) >> 2]; \
}
#define fetch_tile(column) \
line_buffer.patterns[column][0] = ram_[line_buffer.names[column].offset]; \
line_buffer.patterns[column][1] = ram_[line_buffer.names[column].offset+1]; \
line_buffer.patterns[column][2] = ram_[line_buffer.names[column].offset+2]; \
line_buffer.patterns[column][3] = ram_[line_buffer.names[column].offset+3];
#define background_fetch_block(location, column, sprite, row_info) \
slot(location): fetch_tile_name(column, row_info) \
external_slot(location+1); \
slot(location+2): \
slot(location+3): \
slot(location+4): \
fetch_tile(column) \
fetch_tile_name(column+1, row_info) \
sprite_y_read(location+5, sprite); \
slot(location+6): \
slot(location+7): \
slot(location+8): \
fetch_tile(column+1) \
fetch_tile_name(column+2, row_info) \
sprite_y_read(location+9, sprite+2); \
slot(location+10): \
slot(location+11): \
slot(location+12): \
fetch_tile(column+2) \
fetch_tile_name(column+3, row_info) \
sprite_y_read(location+13, sprite+4); \
slot(location+14): \
slot(location+15): fetch_tile(column+3)
// Determine the coarse horizontal scrolling offset; this isn't applied on the first two lines if the programmer has requested it.
LineBuffer &line_buffer = line_buffers_[write_pointer_.row];
LineBuffer &sprite_selection_buffer = line_buffers_[(write_pointer_.row + 1) % mode_timing_.total_lines];
const int horizontal_offset = (write_pointer_.row >= 16 || !master_system_.horizontal_scroll_lock) ? (line_buffer.latched_horizontal_scroll >> 3) : 0;
// Limit address bits in use if this is a SMS2 mode.
const bool is_tall_mode = mode_timing_.pixel_lines != 192;
const size_t pattern_name_address = master_system_.pattern_name_address | (is_tall_mode ? 0x800 : 0);
const size_t pattern_name_offset = is_tall_mode ? 0x100 : 0;
// Determine row info for the screen both (i) if vertical scrolling is applied; and (ii) if it isn't.
// The programmer can opt out of applying vertical scrolling to the right-hand portion of the display.
const int scrolled_row = (write_pointer_.row + master_system_.latched_vertical_scroll) % (is_tall_mode ? 256 : 224);
struct RowInfo {
size_t pattern_address_base;
size_t sub_row[2];
};
const RowInfo scrolled_row_info = {
(pattern_name_address & size_t(((scrolled_row & ~7) << 3) | 0x3800)) - pattern_name_offset,
{size_t((scrolled_row & 7) << 2), 28 ^ size_t((scrolled_row & 7) << 2)}
};
RowInfo row_info;
if(master_system_.vertical_scroll_lock) {
row_info.pattern_address_base = (pattern_name_address & size_t(((write_pointer_.row & ~7) << 3) | 0x3800)) - pattern_name_offset;
row_info.sub_row[0] = size_t((write_pointer_.row & 7) << 2);
row_info.sub_row[1] = 28 ^ size_t((write_pointer_.row & 7) << 2);
} else row_info = scrolled_row_info;
// ... and do the actual fetching, which follows this routine:
switch(start) {
default: assert(false);
sprite_fetch_block(0, 0);
sprite_fetch_block(6, 2);
external_slots_4(12);
external_slot(16);
sprite_fetch_block(17, 4);
sprite_fetch_block(23, 6);
slot(29):
sprite_selection_buffer.reset_sprite_collection();
do_external_slot(to_internal<personality, Clock::TMSMemoryWindow>(29));
external_slot(30);
sprite_y_read(31, 0);
sprite_y_read(32, 2);
sprite_y_read(33, 4);
sprite_y_read(34, 6);
sprite_y_read(35, 8);
sprite_y_read(36, 10);
sprite_y_read(37, 12);
sprite_y_read(38, 14);
background_fetch_block(39, 0, 16, scrolled_row_info);
background_fetch_block(55, 4, 22, scrolled_row_info);
background_fetch_block(71, 8, 28, scrolled_row_info);
background_fetch_block(87, 12, 34, scrolled_row_info);
background_fetch_block(103, 16, 40, scrolled_row_info);
background_fetch_block(119, 20, 46, scrolled_row_info);
background_fetch_block(135, 24, 52, row_info);
background_fetch_block(151, 28, 58, row_info);
external_slots_4(167);
return;
}
#undef background_fetch_block
#undef fetch_tile
#undef fetch_tile_name
#undef sprite_y_read
#undef sprite_fetch_block
#undef sprite_fetch
}
// MARK: - Yamaha
// TODO.
template <Personality personality>
template<bool use_end> void Base<personality>::fetch_yamaha_refresh(int start, int end) {
(void)start;
(void)end;
}
template <Personality personality>
template<bool use_end> void Base<personality>::fetch_yamaha_no_sprites(int start, int end) {
(void)start;
(void)end;
}
template <Personality personality>
template<bool use_end> void Base<personality>::fetch_yamaha_sprites(int start, int end) {
(void)start;
(void)end;
}
// MARK: - Mega Drive
// TODO.
#undef external_slot
#undef slot
#endif /* Fetch_hpp */

View File

@ -0,0 +1,49 @@
//
// PersonalityTraits.hpp
// Clock Signal
//
// Created by Thomas Harte on 06/01/2023.
// Copyright © 2023 Thomas Harte. All rights reserved.
//
#ifndef PersonalityTraits_hpp
#define PersonalityTraits_hpp
namespace TI {
namespace TMS {
// Genus determinants for the various personalityes.
constexpr bool is_sega_vdp(Personality p) {
return p >= Personality::SMSVDP;
}
constexpr bool is_yamaha_vdp(Personality p) {
return p == Personality::V9938 || p == Personality::V9958;
}
// i.e. one with the original internal timings.
constexpr bool is_classic_vdp(Personality p) {
return
p == Personality::TMS9918A ||
p == Personality::SMSVDP ||
p == Personality::SMS2VDP ||
p == Personality::GGVDP;
}
constexpr size_t memory_size(Personality p) {
switch(p) {
case TI::TMS::TMS9918A:
case TI::TMS::SMSVDP:
case TI::TMS::SMS2VDP:
case TI::TMS::GGVDP: return 16 * 1024;
case TI::TMS::MDVDP: return 64 * 1024;
case TI::TMS::V9938: return 128 * 1024;
case TI::TMS::V9958: return 192 * 1024;
}
}
}
}
#endif /* PersonalityTraits_hpp */

View File

@ -117,7 +117,6 @@ class ConcreteMachine:
public:
ConcreteMachine(const Analyser::Static::Target &target, const ROMMachine::ROMFetcher &rom_fetcher) :
z80_(*this),
vdp_(TI::TMS::TMS9918A),
sn76489_(TI::SN76489::Personality::SN76489, audio_queue_, sn76489_divider),
ay_(GI::AY38910::Personality::AY38910, audio_queue_),
mixer_(sn76489_, ay_),
@ -379,7 +378,7 @@ class ConcreteMachine:
}
CPU::Z80::Processor<ConcreteMachine, false, false> z80_;
JustInTimeActor<TI::TMS::TMS9918> vdp_;
JustInTimeActor<TI::TMS::TMS9918<TI::TMS::Personality::TMS9918A>> vdp_;
Concurrency::AsyncTaskQueue<false> audio_queue_;
TI::SN76489 sn76489_;

View File

@ -146,7 +146,6 @@ class ConcreteMachine:
ConcreteMachine(const Target &target, const ROMMachine::ROMFetcher &rom_fetcher):
z80_(*this),
vdp_(TI::TMS::TMS9918A),
i8255_(i8255_port_handler_),
ay_(GI::AY38910::Personality::AY38910, audio_queue_),
audio_toggle_(audio_queue_),
@ -744,7 +743,7 @@ class ConcreteMachine:
};
CPU::Z80::Processor<ConcreteMachine, false, false> z80_;
JustInTimeActor<TI::TMS::TMS9918> vdp_;
JustInTimeActor<TI::TMS::TMS9918<TI::TMS::Personality::TMS9918A>> vdp_;
Intel::i8255::i8255<i8255PortHandler> i8255_;
Concurrency::AsyncTaskQueue<false> audio_queue_;

View File

@ -29,6 +29,7 @@
#include "../../Analyser/Static/Sega/Target.hpp"
#include <algorithm>
#include <cassert>
#include <iostream>
namespace {
@ -77,7 +78,7 @@ class Joystick: public Inputs::ConcreteJoystick {
uint8_t state_ = 0xff;
};
class ConcreteMachine:
template <Analyser::Static::Sega::Target::Model model> class ConcreteMachine:
public Machine,
public CPU::Z80::BusHandler,
public MachineTypes::TimedMachine,
@ -90,11 +91,9 @@ class ConcreteMachine:
public:
ConcreteMachine(const Analyser::Static::Sega::Target &target, const ROMMachine::ROMFetcher &rom_fetcher) :
model_(target.model),
region_(target.region),
paging_scheme_(target.paging_scheme),
z80_(*this),
vdp_(tms_personality_for_model(target.model)),
sn76489_(
(target.model == Target::Model::SG1000) ? TI::SN76489::Personality::SN76489 : TI::SN76489::Personality::SMS,
audio_queue_,
@ -159,7 +158,7 @@ class ConcreteMachine:
page_cartridge();
// Map RAM.
if(is_master_system(model_)) {
if constexpr (is_master_system(model)) {
map(read_pointers_, ram_, 8*1024, 0xc000, 0x10000);
map(write_pointers_, ram_, 8*1024, 0xc000, 0x10000);
} else {
@ -311,7 +310,7 @@ class ConcreteMachine:
case CPU::Z80::PartialMachineCycle::Output:
switch(address & 0xc1) {
case 0x00: // i.e. even ports less than 0x40.
if(is_master_system(model_)) {
if constexpr (is_master_system(model)) {
// TODO: Obey the RAM enable.
LOG("Memory control: " << PADHEX(2) << memory_control_);
memory_control_ = *cycle.value;
@ -431,7 +430,7 @@ class ConcreteMachine:
}
private:
static TI::TMS::Personality tms_personality_for_model(Analyser::Static::Sega::Target::Model model) {
static constexpr TI::TMS::Personality tms_personality() {
switch(model) {
default:
case Target::Model::SG1000: return TI::TMS::TMS9918A;
@ -481,11 +480,10 @@ class ConcreteMachine:
}
using Target = Analyser::Static::Sega::Target;
const Target::Model model_;
const Target::Region region_;
const Target::PagingScheme paging_scheme_;
CPU::Z80::Processor<ConcreteMachine, false, false> z80_;
JustInTimeActor<TI::TMS::TMS9918> vdp_;
JustInTimeActor<TI::TMS::TMS9918<tms_personality()>> vdp_;
Concurrency::AsyncTaskQueue<false> audio_queue_;
TI::SN76489 sn76489_;
@ -559,7 +557,14 @@ using namespace Sega::MasterSystem;
Machine *Machine::MasterSystem(const Analyser::Static::Target *target, const ROMMachine::ROMFetcher &rom_fetcher) {
using Target = Analyser::Static::Sega::Target;
const Target *const sega_target = dynamic_cast<const Target *>(target);
return new ConcreteMachine(*sega_target, rom_fetcher);
switch(sega_target->model) {
case Target::Model::SG1000: return new ConcreteMachine<Target::Model::SG1000>(*sega_target, rom_fetcher);
case Target::Model::MasterSystem: return new ConcreteMachine<Target::Model::MasterSystem>(*sega_target, rom_fetcher);
case Target::Model::MasterSystem2: return new ConcreteMachine<Target::Model::MasterSystem2>(*sega_target, rom_fetcher);
default:
assert(false);
}
}
Machine::~Machine() {}

62
Numeric/BitReverse.hpp Normal file
View File

@ -0,0 +1,62 @@
//
// BitReverse.hpp
// Clock Signal
//
// Created by Thomas Harte on 05/01/2023.
// Copyright © 2023 Thomas Harte. All rights reserved.
//
#ifndef BitReverse_hpp
#define BitReverse_hpp
#include <cstdint>
namespace Numeric {
/// @returns @c source with the order of its bits reversed. E.g. if @c IntT is @c uint8_t then
/// the reverse of bit pattern abcd efgh is hgfd dcba.
template <typename IntT> constexpr IntT bit_reverse(IntT source);
// The single-byte specialisation uses a lookup table.
template<> constexpr uint8_t bit_reverse<uint8_t>(uint8_t source) {
struct ReverseTable {
static constexpr std::array<uint8_t, 256> reverse_table() {
std::array<uint8_t, 256> map{};
for(std::size_t c = 0; c < 256; ++c) {
map[c] = uint8_t(
((c & 0x80) >> 7) |
((c & 0x40) >> 5) |
((c & 0x20) >> 3) |
((c & 0x10) >> 1) |
((c & 0x08) << 1) |
((c & 0x04) << 3) |
((c & 0x02) << 5) |
((c & 0x01) << 7)
);
}
return map;
}
};
const std::array<uint8_t, 256> map = ReverseTable::reverse_table();
return map[source];
}
// All other versions just call the byte-level reverse the appropriate number of times.
template <typename IntT> constexpr IntT bit_reverse(IntT source) {
IntT result;
uint8_t *src = reinterpret_cast<uint8_t *>(&source);
uint8_t *dest = reinterpret_cast<uint8_t *>(&result) + sizeof(result) - 1;
for(size_t c = 0; c < sizeof(source); c++) {
*dest = bit_reverse(*src);
++src;
--dest;
}
return result;
}
}
#endif /* BitReverse_hpp */

View File

@ -137,8 +137,6 @@
4B0E04EA1FC9E5DA00F43484 /* CAS.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 4B0E04E81FC9E5DA00F43484 /* CAS.cpp */; };
4B0E04EB1FC9E78800F43484 /* CAS.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 4B0E04E81FC9E5DA00F43484 /* CAS.cpp */; };
4B0E04F11FC9EA9500F43484 /* MSX.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 4B79A4FF1FC913C900EEDAD5 /* MSX.cpp */; };
4B0E04FA1FC9FA3100F43484 /* 9918.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 4B0E04F91FC9FA3100F43484 /* 9918.cpp */; };
4B0E04FB1FC9FA3100F43484 /* 9918.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 4B0E04F91FC9FA3100F43484 /* 9918.cpp */; };
4B0E61071FF34737002A9DBD /* MSX.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 4B0E61051FF34737002A9DBD /* MSX.cpp */; };
4B0F1BB22602645900B85C66 /* StaticAnalyser.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 4B0F1BB02602645900B85C66 /* StaticAnalyser.cpp */; };
4B0F1BB32602645900B85C66 /* StaticAnalyser.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 4B0F1BB02602645900B85C66 /* StaticAnalyser.cpp */; };
@ -229,6 +227,9 @@
4B3F76B925A1635300178AEC /* PowerPCDecoderTests.mm in Sources */ = {isa = PBXBuildFile; fileRef = 4B3F76B825A1635300178AEC /* PowerPCDecoderTests.mm */; };
4B3FCC40201EC24200960631 /* MultiMachine.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 4B3FCC3F201EC24200960631 /* MultiMachine.cpp */; };
4B3FE75E1F3CF68B00448EE4 /* CPM.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 4B3FE75C1F3CF68B00448EE4 /* CPM.cpp */; };
4B43983929620FC7006B0BFC /* 9918.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 4B43983829620FB1006B0BFC /* 9918.cpp */; };
4B43983A29620FC8006B0BFC /* 9918.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 4B43983829620FB1006B0BFC /* 9918.cpp */; };
4B43983B29620FC9006B0BFC /* 9918.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 4B43983829620FB1006B0BFC /* 9918.cpp */; };
4B448E811F1C45A00009ABD6 /* TZX.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 4B448E7F1F1C45A00009ABD6 /* TZX.cpp */; };
4B448E841F1C4C480009ABD6 /* PulseQueuedTape.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 4B448E821F1C4C480009ABD6 /* PulseQueuedTape.cpp */; };
4B44EBF51DC987AF00A7820C /* AllSuiteA.bin in Resources */ = {isa = PBXBuildFile; fileRef = 4B44EBF41DC987AE00A7820C /* AllSuiteA.bin */; };
@ -352,7 +353,6 @@
4B7752C228217F5C0073E2C5 /* Spectrum.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 4B5D5C9525F56FC7001B4623 /* Spectrum.cpp */; };
4B7752C328217F720073E2C5 /* Z80.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 4B8DD39526360DDF00B3C866 /* Z80.cpp */; };
4B778EF023A5D68C0000D260 /* 68000Storage.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 4BFF1D3822337B0300838EA1 /* 68000Storage.cpp */; };
4B778EF123A5D6B50000D260 /* 9918.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 4B0E04F91FC9FA3100F43484 /* 9918.cpp */; };
4B778EF323A5DB230000D260 /* PCMSegment.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 4B4518731F75E91800926311 /* PCMSegment.cpp */; };
4B778EF423A5DB3A0000D260 /* C1540.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 4B8334941F5E25B60097E338 /* C1540.cpp */; };
4B778EF523A5DB440000D260 /* StaticAnalyser.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 4B894517201967B4007DE474 /* StaticAnalyser.cpp */; };
@ -1179,7 +1179,6 @@
4B0E04E81FC9E5DA00F43484 /* CAS.cpp */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.cpp.cpp; path = CAS.cpp; sourceTree = "<group>"; };
4B0E04E91FC9E5DA00F43484 /* CAS.hpp */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.cpp.h; path = CAS.hpp; sourceTree = "<group>"; };
4B0E04F81FC9FA3000F43484 /* 9918.hpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.h; path = 9918.hpp; sourceTree = "<group>"; };
4B0E04F91FC9FA3100F43484 /* 9918.cpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.cpp; path = 9918.cpp; sourceTree = "<group>"; };
4B0E61051FF34737002A9DBD /* MSX.cpp */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.cpp.cpp; name = MSX.cpp; path = Parsers/MSX.cpp; sourceTree = "<group>"; };
4B0E61061FF34737002A9DBD /* MSX.hpp */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.cpp.h; name = MSX.hpp; path = Parsers/MSX.hpp; sourceTree = "<group>"; };
4B0F1BB02602645900B85C66 /* StaticAnalyser.cpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.cpp; path = StaticAnalyser.cpp; sourceTree = "<group>"; };
@ -1247,6 +1246,7 @@
4B228CDA24DA41880077EF25 /* ScanTarget.metal */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.metal; path = ScanTarget.metal; sourceTree = "<group>"; xcLanguageSpecificationIdentifier = xcode.lang.metal; };
4B24095A1C45DF85004DA684 /* Stepper.hpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.h; path = Stepper.hpp; sourceTree = "<group>"; };
4B2530F3244E6773007980BF /* fm.json */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = text.json; path = fm.json; sourceTree = "<group>"; };
4B262BFF29691F55002EC0F7 /* PersonalityTraits.hpp */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.cpp.h; path = PersonalityTraits.hpp; sourceTree = "<group>"; };
4B2A332C1DB86821002876E3 /* Base */ = {isa = PBXFileReference; lastKnownFileType = file.xib; name = Base; path = "Clock Signal/Base.lproj/OricOptions.xib"; sourceTree = SOURCE_ROOT; };
4B2A53901D117D36003C6002 /* CSAudioQueue.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; path = CSAudioQueue.h; sourceTree = "<group>"; };
4B2A53911D117D36003C6002 /* CSAudioQueue.m */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.objc; path = CSAudioQueue.m; sourceTree = "<group>"; };
@ -1317,6 +1317,11 @@
4B3FCC3F201EC24200960631 /* MultiMachine.cpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.cpp; path = MultiMachine.cpp; sourceTree = "<group>"; };
4B3FE75C1F3CF68B00448EE4 /* CPM.cpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.cpp; name = CPM.cpp; path = Parsers/CPM.cpp; sourceTree = "<group>"; };
4B3FE75D1F3CF68B00448EE4 /* CPM.hpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.h; name = CPM.hpp; path = Parsers/CPM.hpp; sourceTree = "<group>"; };
4B43983829620FB1006B0BFC /* 9918.cpp */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.cpp.cpp; path = 9918.cpp; sourceTree = "<group>"; };
4B43983C29621024006B0BFC /* ClockConverter.hpp */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.cpp.h; path = ClockConverter.hpp; sourceTree = "<group>"; };
4B43983E29628538006B0BFC /* Fetch.hpp */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.cpp.h; path = Fetch.hpp; sourceTree = "<group>"; };
4B43983F2967459B006B0BFC /* Draw.hpp */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.cpp.h; path = Draw.hpp; sourceTree = "<group>"; };
4B43984129674943006B0BFC /* BitReverse.hpp */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.cpp.h; path = BitReverse.hpp; sourceTree = "<group>"; };
4B448E7F1F1C45A00009ABD6 /* TZX.cpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.cpp; path = TZX.cpp; sourceTree = "<group>"; };
4B448E801F1C45A00009ABD6 /* TZX.hpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.h; path = TZX.hpp; sourceTree = "<group>"; };
4B448E821F1C4C480009ABD6 /* PulseQueuedTape.cpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.cpp; path = PulseQueuedTape.cpp; sourceTree = "<group>"; };
@ -2398,7 +2403,6 @@
4B0E04F71FC9F2C800F43484 /* 9918 */ = {
isa = PBXGroup;
children = (
4B0E04F91FC9FA3100F43484 /* 9918.cpp */,
4B0E04F81FC9FA3000F43484 /* 9918.hpp */,
4BD388431FE34E060042B588 /* Implementation */,
);
@ -3288,6 +3292,7 @@
4B7BA03C23D55E7900B98D9E /* Numeric */ = {
isa = PBXGroup;
children = (
4B43984129674943006B0BFC /* BitReverse.hpp */,
4BD155312716362A00410C6E /* BitSpread.hpp */,
4B7BA03E23D55E7900B98D9E /* CRC.hpp */,
4B7BA03F23D55E7900B98D9E /* LFSR.hpp */,
@ -4733,7 +4738,12 @@
4BD388431FE34E060042B588 /* Implementation */ = {
isa = PBXGroup;
children = (
4B43983829620FB1006B0BFC /* 9918.cpp */,
4BD388411FE34E010042B588 /* 9918Base.hpp */,
4B43983C29621024006B0BFC /* ClockConverter.hpp */,
4B43983F2967459B006B0BFC /* Draw.hpp */,
4B43983E29628538006B0BFC /* Fetch.hpp */,
4B262BFF29691F55002EC0F7 /* PersonalityTraits.hpp */,
);
path = Implementation;
sourceTree = "<group>";
@ -5519,7 +5529,6 @@
isa = PBXSourcesBuildPhase;
buildActionMask = 2147483647;
files = (
4B0E04FB1FC9FA3100F43484 /* 9918.cpp in Sources */,
4B1B88C9202E469400B67DFF /* MultiJoystickMachine.cpp in Sources */,
4BCE1DF225D4C3FA00AE7A2B /* Bus.cpp in Sources */,
4BC080DA26A25ADA00D03FD8 /* Amiga.cpp in Sources */,
@ -5529,6 +5538,7 @@
4B1B5900246E19FD009C171E /* State.cpp in Sources */,
4BC57CDA2436A62900FBC404 /* State.cpp in Sources */,
4B055ACB1FAE9AFB0060FFFF /* SerialBus.cpp in Sources */,
4B43983B29620FC9006B0BFC /* 9918.cpp in Sources */,
4B8318B122D3E53A006DB630 /* DiskIICard.cpp in Sources */,
4B055A9B1FAE85DA0060FFFF /* AcornADF.cpp in Sources */,
4B0E04F11FC9EA9500F43484 /* MSX.cpp in Sources */,
@ -5821,6 +5831,7 @@
4BC080CA26A238CC00D03FD8 /* AmigaADF.cpp in Sources */,
4B1A1B1E27320FBC00119335 /* Disk.cpp in Sources */,
4B92E26A234AE35100CD6D1B /* MFP68901.cpp in Sources */,
4B43983929620FC7006B0BFC /* 9918.cpp in Sources */,
4B051C97266EF5F600CA44E8 /* CSAppleII.mm in Sources */,
4B0ACC2A23775819008902D0 /* Video.cpp in Sources */,
4B54C0BF1F8D8F450050900F /* Keyboard.cpp in Sources */,
@ -5927,7 +5938,6 @@
4B17B58B20A8A9D9007CCA8F /* StringSerialiser.cpp in Sources */,
4B2E2D9D1C3A070400138695 /* Electron.cpp in Sources */,
4B051CA826781D6500CA44E8 /* StaticAnalyser.cpp in Sources */,
4B0E04FA1FC9FA3100F43484 /* 9918.cpp in Sources */,
4B69FB3D1C4D908A00B5F0AA /* Tape.cpp in Sources */,
4B4518841F75E91A00926311 /* UnformattedTrack.cpp in Sources */,
4B65086022F4CF8D009C1100 /* Keyboard.cpp in Sources */,
@ -6123,6 +6133,7 @@
4BE34438238389E10058E78F /* AtariSTVideoTests.mm in Sources */,
4BEF6AAC1D35D1C400E73575 /* DPLLTests.swift in Sources */,
4BE76CF922641ED400ACD6FA /* QLTests.mm in Sources */,
4B43983A29620FC8006B0BFC /* 9918.cpp in Sources */,
4B778F0923A5EC150000D260 /* OricTAP.cpp in Sources */,
4B3BA0CF1D318B44005DD7A7 /* MOS6522Bridge.mm in Sources */,
4B778F6023A5F3460000D260 /* Disk.cpp in Sources */,
@ -6138,7 +6149,6 @@
4B0DA67D282DCDF300C12F17 /* Instruction.cpp in Sources */,
4BFCA12B1ECBE7C400AC40C1 /* ZexallTests.swift in Sources */,
4B778F2223A5EDDD0000D260 /* PulseQueuedTape.cpp in Sources */,
4B778EF123A5D6B50000D260 /* 9918.cpp in Sources */,
4B051CB3267D3FF800CA44E8 /* EnterpriseNickTests.mm in Sources */,
4B9D0C4D22C7DA1A00DE1AD3 /* 68000ControlFlowTests.mm in Sources */,
4BB2A9AF1E13367E001A5C23 /* CRCTests.mm in Sources */,

View File

@ -19,8 +19,10 @@
[super setUp];
}
using VDP = TI::TMS::TMS9918<TI::TMS::Personality::SMSVDP>;
- (void)testLineInterrupt {
TI::TMS::TMS9918 vdp(TI::TMS::Personality::SMSVDP);
VDP vdp;
// Disable end-of-frame interrupts, enable line interrupts.
vdp.write(1, 0x00);
@ -63,7 +65,7 @@
}
- (void)testFirstLineInterrupt {
TI::TMS::TMS9918 vdp(TI::TMS::Personality::SMSVDP);
VDP vdp;
// Disable end-of-frame interrupts, enable line interrupts, set an interrupt to occur every line.
vdp.write(1, 0x00);
@ -96,7 +98,7 @@
}
- (void)testInterruptPrediction {
TI::TMS::TMS9918 vdp(TI::TMS::Personality::SMSVDP);
VDP vdp;
for(int c = 0; c < 256; ++c) {
for(int with_eof = (c < 192) ? 0 : 1; with_eof < 2; ++with_eof) {
@ -144,7 +146,7 @@
}
- (void)testTimeUntilLine {
TI::TMS::TMS9918 vdp(TI::TMS::Personality::SMSVDP);
VDP vdp;
auto time_until_line = vdp.get_time_until_line(-1).as_integral();
for(int c = 0; c < 262*228*5; ++c) {

View File

@ -65,6 +65,7 @@ SOURCES += \
$$SRC/Components/8272/*.cpp \
$$SRC/Components/8530/*.cpp \
$$SRC/Components/9918/*.cpp \
$$SRC/Components/9918/Implementation/*.cpp \
$$SRC/Components/AudioToggle/*.cpp \
$$SRC/Components/AY38910/*.cpp \
$$SRC/Components/DiskII/*.cpp \