1
0
mirror of https://github.com/TomHarte/CLK.git synced 2024-09-29 00:56:21 +00:00

Commuted remaining Electron underscores. It would be nice also to factor out the video, but the time hasn't come yet.

This commit is contained in:
Thomas Harte 2016-12-03 13:01:01 -05:00
parent 4fac538a57
commit eb3a1fbfb7
2 changed files with 286 additions and 287 deletions

View File

@ -37,30 +37,29 @@ namespace {
#define graphics_column(v) ((((v) & 127) - first_graphics_cycle + 128) & 127)
Machine::Machine() :
_interrupt_control(0),
_interrupt_status(Interrupt::PowerOnReset | Interrupt::TransmitDataEmpty | 0x80),
_frameCycles(0),
_displayOutputPosition(0),
_audioOutputPosition(0),
_current_pixel_line(-1),
_use_fast_tape_hack(false),
_crt(nullptr),
_phase(0)
interrupt_control_(0),
interrupt_status_(Interrupt::PowerOnReset | Interrupt::TransmitDataEmpty | 0x80),
frame_cycles_(0),
display_output_position_(0),
audio_output_position_(0),
current_pixel_line_(-1),
use_fast_tape_hack_(false),
phase_(0)
{
memset(_key_states, 0, sizeof(_key_states));
memset(_palette, 0xf, sizeof(_palette));
memset(key_states_, 0, sizeof(key_states_));
memset(palette_, 0xf, sizeof(palette_));
for(int c = 0; c < 16; c++)
memset(_roms[c], 0xff, 16384);
memset(roms_[c], 0xff, 16384);
_tape.set_delegate(this);
tape_.set_delegate(this);
set_clock_rate(2000000);
}
void Machine::setup_output(float aspect_ratio)
{
_speaker.reset(new Speaker);
_crt.reset(new Outputs::CRT::CRT(crt_cycles_per_line, 8, Outputs::CRT::DisplayType::PAL50, 1));
_crt->set_rgb_sampling_function(
speaker_.reset(new Speaker);
crt_.reset(new Outputs::CRT::CRT(crt_cycles_per_line, 8, Outputs::CRT::DisplayType::PAL50, 1));
crt_->set_rgb_sampling_function(
"vec3 rgb_sample(usampler2D sampler, vec2 coordinate, vec2 icoordinate)"
"{"
"uint texValue = texture(sampler, coordinate).r;"
@ -69,17 +68,17 @@ void Machine::setup_output(float aspect_ratio)
"}");
// TODO: as implied below, I've introduced a clock's latency into the graphics pipeline somehow. Investigate.
_crt->set_visible_area(_crt->get_rect_for_area(first_graphics_line - 3, 256, (first_graphics_cycle+1) * crt_cycles_multiplier, 80 * crt_cycles_multiplier, 4.0f / 3.0f));
crt_->set_visible_area(crt_->get_rect_for_area(first_graphics_line - 3, 256, (first_graphics_cycle+1) * crt_cycles_multiplier, 80 * crt_cycles_multiplier, 4.0f / 3.0f));
// The maximum output frequency is 62500Hz and all other permitted output frequencies are integral divisions of that;
// however setting the speaker on or off can happen on any 2Mhz cycle, and probably (?) takes effect immediately. So
// run the speaker at a 2000000Hz input rate, at least for the time being.
_speaker->set_input_rate(2000000 / Speaker::clock_rate_divider);
speaker_->set_input_rate(2000000 / Speaker::clock_rate_divider);
}
void Machine::close_output()
{
_crt = nullptr;
crt_ = nullptr;
}
unsigned int Machine::perform_bus_operation(CPU6502::BusOperation operation, uint16_t address, uint8_t *value)
@ -90,29 +89,29 @@ unsigned int Machine::perform_bus_operation(CPU6502::BusOperation operation, uin
{
if(isReadOperation(operation))
{
*value = _ram[address];
*value = ram_[address];
}
else
{
if(
(
((_frameCycles >= first_graphics_line * cycles_per_line) && (_frameCycles < (first_graphics_line + 256) * cycles_per_line)) ||
((_frameCycles >= (first_graphics_line + field_divider_line) * cycles_per_line) && (_frameCycles < (first_graphics_line + 256 + field_divider_line) * cycles_per_line))
((frame_cycles_ >= first_graphics_line * cycles_per_line) && (frame_cycles_ < (first_graphics_line + 256) * cycles_per_line)) ||
((frame_cycles_ >= (first_graphics_line + field_divider_line) * cycles_per_line) && (frame_cycles_ < (first_graphics_line + 256 + field_divider_line) * cycles_per_line))
)
)
update_display();
_ram[address] = *value;
ram_[address] = *value;
}
// for the entire frame, RAM is accessible only on odd cycles; in modes below 4
// it's also accessible only outside of the pixel regions
cycles += 1 + (_frameCycles&1);
if(_screen_mode < 4)
cycles += 1 + (frame_cycles_&1);
if(screen_mode_ < 4)
{
const int current_line = graphics_line(_frameCycles + (_frameCycles&1));
const int current_column = graphics_column(_frameCycles + (_frameCycles&1));
if(current_line < 256 && current_column < 80 && !_isBlankLine)
const int current_line = graphics_line(frame_cycles_ + (frame_cycles_&1));
const int current_column = graphics_column(frame_cycles_ + (frame_cycles_&1));
if(current_line < 256 && current_column < 80 && !is_blank_line_)
cycles += (unsigned int)(80 - current_column);
}
}
@ -127,39 +126,39 @@ unsigned int Machine::perform_bus_operation(CPU6502::BusOperation operation, uin
case 0xfe00:
if(isReadOperation(operation))
{
*value = _interrupt_status;
_interrupt_status &= ~PowerOnReset;
*value = interrupt_status_;
interrupt_status_ &= ~PowerOnReset;
}
else
{
_interrupt_control = (*value) & ~1;
interrupt_control_ = (*value) & ~1;
evaluate_interrupts();
}
break;
case 0xfe02:
if(!isReadOperation(operation))
{
_startScreenAddress = (_startScreenAddress & 0xfe00) | (uint16_t)(((*value) & 0xe0) << 1);
if(!_startScreenAddress) _startScreenAddress |= 0x8000;
start_screen_address_ = (start_screen_address_ & 0xfe00) | (uint16_t)(((*value) & 0xe0) << 1);
if(!start_screen_address_) start_screen_address_ |= 0x8000;
}
break;
case 0xfe03:
if(!isReadOperation(operation))
{
_startScreenAddress = (_startScreenAddress & 0x01ff) | (uint16_t)(((*value) & 0x3f) << 9);
if(!_startScreenAddress) _startScreenAddress |= 0x8000;
start_screen_address_ = (start_screen_address_ & 0x01ff) | (uint16_t)(((*value) & 0x3f) << 9);
if(!start_screen_address_) start_screen_address_ |= 0x8000;
}
break;
case 0xfe04:
if(isReadOperation(operation))
{
*value = _tape.get_data_register();
_tape.clear_interrupts(Interrupt::ReceiveDataFull);
*value = tape_.get_data_register();
tape_.clear_interrupts(Interrupt::ReceiveDataFull);
}
else
{
_tape.set_data_register(*value);
_tape.clear_interrupts(Interrupt::TransmitDataEmpty);
tape_.set_data_register(*value);
tape_.clear_interrupts(Interrupt::TransmitDataEmpty);
}
break;
case 0xfe05:
@ -168,29 +167,29 @@ unsigned int Machine::perform_bus_operation(CPU6502::BusOperation operation, uin
const uint8_t interruptDisable = (*value)&0xf0;
if( interruptDisable )
{
if( interruptDisable&0x10 ) _interrupt_status &= ~Interrupt::DisplayEnd;
if( interruptDisable&0x20 ) _interrupt_status &= ~Interrupt::RealTimeClock;
if( interruptDisable&0x40 ) _interrupt_status &= ~Interrupt::HighToneDetect;
if( interruptDisable&0x10 ) interrupt_status_ &= ~Interrupt::DisplayEnd;
if( interruptDisable&0x20 ) interrupt_status_ &= ~Interrupt::RealTimeClock;
if( interruptDisable&0x40 ) interrupt_status_ &= ~Interrupt::HighToneDetect;
evaluate_interrupts();
// TODO: NMI
}
// latch the paged ROM in case external hardware is being emulated
_active_rom = (Electron::ROMSlot)(*value & 0xf);
active_rom_ = (Electron::ROMSlot)(*value & 0xf);
// apply the ULA's test
if(*value & 0x08)
{
if(*value & 0x04)
{
_keyboard_is_active = false;
_basic_is_active = false;
keyboard_is_active_ = false;
basic_is_active_ = false;
}
else
{
_keyboard_is_active = !(*value & 0x02);
_basic_is_active = !_keyboard_is_active;
keyboard_is_active_ = !(*value & 0x02);
basic_is_active_ = !keyboard_is_active_;
}
}
}
@ -199,8 +198,8 @@ unsigned int Machine::perform_bus_operation(CPU6502::BusOperation operation, uin
if(!isReadOperation(operation))
{
update_audio();
_speaker->set_divider(*value);
_tape.set_counter(*value);
speaker_->set_divider(*value);
tape_.set_counter(*value);
}
break;
case 0xfe07:
@ -209,16 +208,16 @@ unsigned int Machine::perform_bus_operation(CPU6502::BusOperation operation, uin
// update screen mode
uint8_t new_screen_mode = ((*value) >> 3)&7;
if(new_screen_mode == 7) new_screen_mode = 4;
if(new_screen_mode != _screen_mode)
if(new_screen_mode != screen_mode_)
{
update_display();
_screen_mode = new_screen_mode;
switch(_screen_mode)
screen_mode_ = new_screen_mode;
switch(screen_mode_)
{
case 0: case 1: case 2: _screenModeBaseAddress = 0x3000; break;
case 3: _screenModeBaseAddress = 0x4000; break;
case 4: case 5: _screenModeBaseAddress = 0x5800; break;
case 6: _screenModeBaseAddress = 0x6000; break;
case 0: case 1: case 2: screen_mode_base_address_ = 0x3000; break;
case 3: screen_mode_base_address_ = 0x4000; break;
case 4: case 5: screen_mode_base_address_ = 0x5800; break;
case 6: screen_mode_base_address_ = 0x6000; break;
}
}
@ -227,13 +226,13 @@ unsigned int Machine::perform_bus_operation(CPU6502::BusOperation operation, uin
if(new_speaker_is_enabled != speaker_is_enabled_)
{
update_audio();
_speaker->set_is_enabled(new_speaker_is_enabled);
speaker_->set_is_enabled(new_speaker_is_enabled);
speaker_is_enabled_ = new_speaker_is_enabled;
}
_tape.set_is_enabled((*value & 6) != 6);
_tape.set_is_in_input_mode((*value & 6) == 0);
_tape.set_is_running(((*value)&0x40) ? true : false);
tape_.set_is_enabled((*value & 6) != 6);
tape_.set_is_in_input_mode((*value & 6) == 0);
tape_.set_is_running(((*value)&0x40) ? true : false);
// TODO: caps lock LED
}
@ -254,46 +253,46 @@ unsigned int Machine::perform_bus_operation(CPU6502::BusOperation operation, uin
const uint8_t colour = ~(*value);
if(address&1)
{
_palette[registers[index][0]] = (_palette[registers[index][0]]&3) | ((colour >> 1)&4);
_palette[registers[index][1]] = (_palette[registers[index][1]]&3) | ((colour >> 0)&4);
_palette[registers[index][2]] = (_palette[registers[index][2]]&3) | ((colour << 1)&4);
_palette[registers[index][3]] = (_palette[registers[index][3]]&3) | ((colour << 2)&4);
palette_[registers[index][0]] = (palette_[registers[index][0]]&3) | ((colour >> 1)&4);
palette_[registers[index][1]] = (palette_[registers[index][1]]&3) | ((colour >> 0)&4);
palette_[registers[index][2]] = (palette_[registers[index][2]]&3) | ((colour << 1)&4);
palette_[registers[index][3]] = (palette_[registers[index][3]]&3) | ((colour << 2)&4);
_palette[registers[index][2]] = (_palette[registers[index][2]]&5) | ((colour >> 4)&2);
_palette[registers[index][3]] = (_palette[registers[index][3]]&5) | ((colour >> 3)&2);
palette_[registers[index][2]] = (palette_[registers[index][2]]&5) | ((colour >> 4)&2);
palette_[registers[index][3]] = (palette_[registers[index][3]]&5) | ((colour >> 3)&2);
}
else
{
_palette[registers[index][0]] = (_palette[registers[index][0]]&6) | ((colour >> 7)&1);
_palette[registers[index][1]] = (_palette[registers[index][1]]&6) | ((colour >> 6)&1);
_palette[registers[index][2]] = (_palette[registers[index][2]]&6) | ((colour >> 5)&1);
_palette[registers[index][3]] = (_palette[registers[index][3]]&6) | ((colour >> 4)&1);
palette_[registers[index][0]] = (palette_[registers[index][0]]&6) | ((colour >> 7)&1);
palette_[registers[index][1]] = (palette_[registers[index][1]]&6) | ((colour >> 6)&1);
palette_[registers[index][2]] = (palette_[registers[index][2]]&6) | ((colour >> 5)&1);
palette_[registers[index][3]] = (palette_[registers[index][3]]&6) | ((colour >> 4)&1);
_palette[registers[index][0]] = (_palette[registers[index][0]]&5) | ((colour >> 2)&2);
_palette[registers[index][1]] = (_palette[registers[index][1]]&5) | ((colour >> 1)&2);
palette_[registers[index][0]] = (palette_[registers[index][0]]&5) | ((colour >> 2)&2);
palette_[registers[index][1]] = (palette_[registers[index][1]]&5) | ((colour >> 1)&2);
}
// regenerate all palette tables for now
#define pack(a, b) (uint8_t)((a << 4) | (b))
for(int byte = 0; byte < 256; byte++)
{
uint8_t *target = (uint8_t *)&_paletteTables.forty1bpp[byte];
target[0] = pack(_palette[(byte&0x80) >> 4], _palette[(byte&0x40) >> 3]);
target[1] = pack(_palette[(byte&0x20) >> 2], _palette[(byte&0x10) >> 1]);
uint8_t *target = (uint8_t *)&palette_tables_.forty1bpp[byte];
target[0] = pack(palette_[(byte&0x80) >> 4], palette_[(byte&0x40) >> 3]);
target[1] = pack(palette_[(byte&0x20) >> 2], palette_[(byte&0x10) >> 1]);
target = (uint8_t *)&_paletteTables.eighty2bpp[byte];
target[0] = pack(_palette[((byte&0x80) >> 4) | ((byte&0x08) >> 2)], _palette[((byte&0x40) >> 3) | ((byte&0x04) >> 1)]);
target[1] = pack(_palette[((byte&0x20) >> 2) | ((byte&0x02) >> 0)], _palette[((byte&0x10) >> 1) | ((byte&0x01) << 1)]);
target = (uint8_t *)&palette_tables_.eighty2bpp[byte];
target[0] = pack(palette_[((byte&0x80) >> 4) | ((byte&0x08) >> 2)], palette_[((byte&0x40) >> 3) | ((byte&0x04) >> 1)]);
target[1] = pack(palette_[((byte&0x20) >> 2) | ((byte&0x02) >> 0)], palette_[((byte&0x10) >> 1) | ((byte&0x01) << 1)]);
target = (uint8_t *)&_paletteTables.eighty1bpp[byte];
target[0] = pack(_palette[(byte&0x80) >> 4], _palette[(byte&0x40) >> 3]);
target[1] = pack(_palette[(byte&0x20) >> 2], _palette[(byte&0x10) >> 1]);
target[2] = pack(_palette[(byte&0x08) >> 0], _palette[(byte&0x04) << 1]);
target[3] = pack(_palette[(byte&0x02) << 2], _palette[(byte&0x01) << 3]);
target = (uint8_t *)&palette_tables_.eighty1bpp[byte];
target[0] = pack(palette_[(byte&0x80) >> 4], palette_[(byte&0x40) >> 3]);
target[1] = pack(palette_[(byte&0x20) >> 2], palette_[(byte&0x10) >> 1]);
target[2] = pack(palette_[(byte&0x08) >> 0], palette_[(byte&0x04) << 1]);
target[3] = pack(palette_[(byte&0x02) << 2], palette_[(byte&0x01) << 3]);
_paletteTables.forty2bpp[byte] = pack(_palette[((byte&0x80) >> 4) | ((byte&0x08) >> 2)], _palette[((byte&0x40) >> 3) | ((byte&0x04) >> 1)]);
_paletteTables.eighty4bpp[byte] = pack( _palette[((byte&0x80) >> 4) | ((byte&0x20) >> 3) | ((byte&0x08) >> 2) | ((byte&0x02) >> 1)],
_palette[((byte&0x40) >> 3) | ((byte&0x10) >> 2) | ((byte&0x04) >> 1) | ((byte&0x01) >> 0)]);
palette_tables_.forty2bpp[byte] = pack(palette_[((byte&0x80) >> 4) | ((byte&0x08) >> 2)], palette_[((byte&0x40) >> 3) | ((byte&0x04) >> 1)]);
palette_tables_.eighty4bpp[byte] = pack( palette_[((byte&0x80) >> 4) | ((byte&0x20) >> 3) | ((byte&0x08) >> 2) | ((byte&0x02) >> 1)],
palette_[((byte&0x40) >> 3) | ((byte&0x10) >> 2) | ((byte&0x04) >> 1) | ((byte&0x01) >> 0)]);
}
#undef pack
}
@ -301,7 +300,7 @@ unsigned int Machine::perform_bus_operation(CPU6502::BusOperation operation, uin
break;
case 0xfc04: case 0xfc05: case 0xfc06: case 0xfc07:
if(_plus3 && (address&0x00f0) == 0x00c0)
if(plus3_ && (address&0x00f0) == 0x00c0)
{
if(is_holding_shift_ && address == 0xfcc4)
{
@ -309,17 +308,17 @@ unsigned int Machine::perform_bus_operation(CPU6502::BusOperation operation, uin
set_key_state(KeyShift, false);
}
if(isReadOperation(operation))
*value = _plus3->get_register(address);
*value = plus3_->get_register(address);
else
_plus3->set_register(address, *value);
plus3_->set_register(address, *value);
}
break;
case 0xfc00:
if(_plus3 && (address&0x00f0) == 0x00c0)
if(plus3_ && (address&0x00f0) == 0x00c0)
{
if(!isReadOperation(operation))
{
_plus3->set_control_register(*value);
plus3_->set_control_register(*value);
}
else
*value = 1;
@ -332,8 +331,8 @@ unsigned int Machine::perform_bus_operation(CPU6502::BusOperation operation, uin
if(isReadOperation(operation))
{
if(
_use_fast_tape_hack &&
_tape.has_tape() &&
use_fast_tape_hack_ &&
tape_.has_tape() &&
(operation == CPU6502::BusOperation::ReadOpcode) &&
(
(address == 0xf4e5) || (address == 0xf4e6) || // double NOPs at 0xf4e5, 0xf6de, 0xf6fa and 0xfa51
@ -355,41 +354,41 @@ unsigned int Machine::perform_bus_operation(CPU6502::BusOperation operation, uin
uint8_t service_call = (uint8_t)get_value_of_register(CPU6502::Register::X);
if(address == 0xf0a8)
{
if(!_ram[0x247] && service_call == 14)
if(!ram_[0x247] && service_call == 14)
{
_tape.set_delegate(nullptr);
tape_.set_delegate(nullptr);
// TODO: handle tape wrap around.
int cycles_left_while_plausibly_in_data = 50;
_tape.clear_interrupts(Interrupt::ReceiveDataFull);
while(!_tape.get_tape()->is_at_end())
tape_.clear_interrupts(Interrupt::ReceiveDataFull);
while(!tape_.get_tape()->is_at_end())
{
_tape.run_for_input_pulse();
tape_.run_for_input_pulse();
cycles_left_while_plausibly_in_data--;
if(!cycles_left_while_plausibly_in_data) _fast_load_is_in_data = false;
if( (_tape.get_interrupt_status() & Interrupt::ReceiveDataFull) &&
(_fast_load_is_in_data || _tape.get_data_register() == 0x2a)
if(!cycles_left_while_plausibly_in_data) fast_load_is_in_data_ = false;
if( (tape_.get_interrupt_status() & Interrupt::ReceiveDataFull) &&
(fast_load_is_in_data_ || tape_.get_data_register() == 0x2a)
) break;
}
_tape.set_delegate(this);
_tape.clear_interrupts(Interrupt::ReceiveDataFull);
_interrupt_status |= _tape.get_interrupt_status();
tape_.set_delegate(this);
tape_.clear_interrupts(Interrupt::ReceiveDataFull);
interrupt_status_ |= tape_.get_interrupt_status();
_fast_load_is_in_data = true;
fast_load_is_in_data_ = true;
set_value_of_register(CPU6502::Register::A, 0);
set_value_of_register(CPU6502::Register::Y, _tape.get_data_register());
set_value_of_register(CPU6502::Register::Y, tape_.get_data_register());
*value = 0x60; // 0x60 is RTS
}
else
*value = _os[address & 16383];
*value = os_[address & 16383];
}
else
*value = 0xea;
}
else
{
*value = _os[address & 16383];
*value = os_[address & 16383];
}
}
}
@ -397,22 +396,22 @@ unsigned int Machine::perform_bus_operation(CPU6502::BusOperation operation, uin
{
if(isReadOperation(operation))
{
*value = _roms[_active_rom][address & 16383];
if(_keyboard_is_active)
*value = roms_[active_rom_][address & 16383];
if(keyboard_is_active_)
{
*value &= 0xf0;
for(int address_line = 0; address_line < 14; address_line++)
{
if(!(address&(1 << address_line))) *value |= _key_states[address_line];
if(!(address&(1 << address_line))) *value |= key_states_[address_line];
}
}
if(_basic_is_active)
if(basic_is_active_)
{
*value &= _roms[ROMSlotBASIC][address & 16383];
*value &= roms_[ROMSlotBASIC][address & 16383];
}
} else if(_rom_write_masks[_active_rom])
} else if(rom_write_masks_[active_rom_])
{
_roms[_active_rom][address & 16383] = *value;
roms_[active_rom_][address & 16383] = *value;
}
}
break;
@ -425,9 +424,9 @@ unsigned int Machine::perform_bus_operation(CPU6502::BusOperation operation, uin
// }
// const int end_of_field =
// if(_frameCycles < (256 + first_graphics_line) << 7))
// if(frame_cycles_ < (256 + first_graphics_line) << 7))
const unsigned int pixel_line_clock = _frameCycles;// + 128 - first_graphics_cycle + 80;
const unsigned int pixel_line_clock = frame_cycles_;// + 128 - first_graphics_cycle + 80;
const unsigned int line_before_cycle = graphics_line(pixel_line_clock);
const unsigned int line_after_cycle = graphics_line(pixel_line_clock + cycles);
@ -451,30 +450,30 @@ unsigned int Machine::perform_bus_operation(CPU6502::BusOperation operation, uin
signal_interrupt(Interrupt::RealTimeClock);
}
_frameCycles += cycles;
frame_cycles_ += cycles;
if(!(_frameCycles&127)) _phase += 64;
if(!(frame_cycles_&127)) phase_ += 64;
// deal with frame wraparound by updating the two dependent subsystems
// as though the exact end of frame had been hit, then reset those
// and allow the frame cycle counter to assume its real value
if(_frameCycles >= cycles_per_frame)
if(frame_cycles_ >= cycles_per_frame)
{
unsigned int nextFrameCycles = _frameCycles - cycles_per_frame;
_frameCycles = cycles_per_frame;
unsigned int nextFrameCycles = frame_cycles_ - cycles_per_frame;
frame_cycles_ = cycles_per_frame;
update_display();
update_audio();
_displayOutputPosition = 0;
_audioOutputPosition = 0;
_frameCycles = nextFrameCycles;
display_output_position_ = 0;
audio_output_position_ = 0;
frame_cycles_ = nextFrameCycles;
}
if(!(_frameCycles&16383))
if(!(frame_cycles_&16383))
update_audio();
_tape.run_for_cycles(cycles);
tape_.run_for_cycles(cycles);
if(typer_) typer_->update((int)cycles);
if(_plus3) _plus3->run_for_cycles(4*cycles);
if(plus3_) plus3_->run_for_cycles(4*cycles);
return cycles;
}
@ -483,31 +482,31 @@ void Machine::synchronise()
{
update_display();
update_audio();
_speaker->flush();
speaker_->flush();
}
void Machine::configure_as_target(const StaticAnalyser::Target &target)
{
if(target.tapes.size())
{
_tape.set_tape(target.tapes.front());
tape_.set_tape(target.tapes.front());
}
if(target.disks.size())
{
_plus3.reset(new Plus3);
plus3_.reset(new Plus3);
if(target.acorn.has_dfs)
{
set_rom(ROMSlot0, _dfs, true);
set_rom(ROMSlot0, dfs_, true);
}
if(target.acorn.has_adfs)
{
set_rom(ROMSlot4, _adfs, true);
set_rom(ROMSlot5, std::vector<uint8_t>(_adfs.begin() + 16384, _adfs.end()), true);
set_rom(ROMSlot4, adfs_, true);
set_rom(ROMSlot5, std::vector<uint8_t>(adfs_.begin() + 16384, adfs_.end()), true);
}
_plus3->set_disk(target.disks.front(), 0);
plus3_->set_disk(target.disks.front(), 0);
}
ROMSlot slot = ROMSlot12;
@ -533,13 +532,13 @@ void Machine::set_rom(ROMSlot slot, std::vector<uint8_t> data, bool is_writeable
uint8_t *target = nullptr;
switch(slot)
{
case ROMSlotDFS: _dfs = data; return;
case ROMSlotADFS: _adfs = data; return;
case ROMSlotDFS: dfs_ = data; return;
case ROMSlotADFS: adfs_ = data; return;
case ROMSlotOS: target = _os; break;
case ROMSlotOS: target = os_; break;
default:
target = _roms[slot];
_rom_write_masks[slot] = is_writeable;
target = roms_[slot];
rom_write_masks_[slot] = is_writeable;
break;
}
@ -548,221 +547,221 @@ void Machine::set_rom(ROMSlot slot, std::vector<uint8_t> data, bool is_writeable
inline void Machine::signal_interrupt(Electron::Interrupt interrupt)
{
_interrupt_status |= interrupt;
interrupt_status_ |= interrupt;
evaluate_interrupts();
}
inline void Machine::clear_interrupt(Electron::Interrupt interrupt)
{
_interrupt_status &= ~interrupt;
interrupt_status_ &= ~interrupt;
evaluate_interrupts();
}
void Machine::tape_did_change_interrupt_status(Tape *tape)
{
_interrupt_status = (_interrupt_status & ~(Interrupt::TransmitDataEmpty | Interrupt::ReceiveDataFull | Interrupt::HighToneDetect)) | _tape.get_interrupt_status();
interrupt_status_ = (interrupt_status_ & ~(Interrupt::TransmitDataEmpty | Interrupt::ReceiveDataFull | Interrupt::HighToneDetect)) | tape_.get_interrupt_status();
evaluate_interrupts();
}
inline void Machine::evaluate_interrupts()
{
if(_interrupt_status & _interrupt_control)
if(interrupt_status_ & interrupt_control_)
{
_interrupt_status |= 1;
interrupt_status_ |= 1;
}
else
{
_interrupt_status &= ~1;
interrupt_status_ &= ~1;
}
set_irq_line(_interrupt_status & 1);
set_irq_line(interrupt_status_ & 1);
}
inline void Machine::update_audio()
{
unsigned int difference = _frameCycles - _audioOutputPosition;
_audioOutputPosition = _frameCycles;
_speaker->run_for_cycles(difference / Speaker::clock_rate_divider);
_audioOutputPositionError = difference % Speaker::clock_rate_divider;
unsigned int difference = frame_cycles_ - audio_output_position_ + audio_output_position_error_;
audio_output_position_ = frame_cycles_;
speaker_->run_for_cycles(difference / Speaker::clock_rate_divider);
audio_output_position_error_ = difference % Speaker::clock_rate_divider;
}
inline void Machine::start_pixel_line()
{
_current_pixel_line = (_current_pixel_line+1)&255;
if(!_current_pixel_line)
current_pixel_line_ = (current_pixel_line_+1)&255;
if(!current_pixel_line_)
{
_startLineAddress = _startScreenAddress;
_current_character_row = 0;
_isBlankLine = false;
start_line_address_ = start_screen_address_;
current_character_row_ = 0;
is_blank_line_ = false;
}
else
{
bool mode_has_blank_lines = (_screen_mode == 6) || (_screen_mode == 3);
_isBlankLine = (mode_has_blank_lines && ((_current_character_row > 7 && _current_character_row < 10) || (_current_pixel_line > 249)));
bool mode_has_blank_lines = (screen_mode_ == 6) || (screen_mode_ == 3);
is_blank_line_ = (mode_has_blank_lines && ((current_character_row_ > 7 && current_character_row_ < 10) || (current_pixel_line_ > 249)));
if(!_isBlankLine)
if(!is_blank_line_)
{
_startLineAddress++;
start_line_address_++;
if(_current_character_row > 7)
if(current_character_row_ > 7)
{
_startLineAddress += ((_screen_mode < 4) ? 80 : 40) * 8 - 8;
_current_character_row = 0;
start_line_address_ += ((screen_mode_ < 4) ? 80 : 40) * 8 - 8;
current_character_row_ = 0;
}
}
}
_currentScreenAddress = _startLineAddress;
_current_pixel_column = 0;
_initial_output_target = _current_output_target = nullptr;
current_screen_address_ = start_line_address_;
current_pixel_column_ = 0;
initial_output_target_ = current_output_target_ = nullptr;
}
inline void Machine::end_pixel_line()
{
if(_current_output_target) _crt->output_data((unsigned int)((_current_output_target - _initial_output_target) * _current_output_divider), _current_output_divider);
_current_character_row++;
if(current_output_target_) crt_->output_data((unsigned int)((current_output_target_ - initial_output_target_) * current_output_divider_), current_output_divider_);
current_character_row_++;
}
inline void Machine::output_pixels(unsigned int number_of_cycles)
{
if(!number_of_cycles) return;
if(_isBlankLine)
if(is_blank_line_)
{
_crt->output_blank(number_of_cycles * crt_cycles_multiplier);
crt_->output_blank(number_of_cycles * crt_cycles_multiplier);
}
else
{
unsigned int divider = 0;
switch(_screen_mode)
switch(screen_mode_)
{
case 0: case 3: divider = 2; break;
case 1: case 4: case 6: divider = 4; break;
case 2: case 5: divider = 8; break;
}
if(!_initial_output_target || divider != _current_output_divider)
if(!initial_output_target_ || divider != current_output_divider_)
{
if(_current_output_target) _crt->output_data((unsigned int)((_current_output_target - _initial_output_target) * _current_output_divider), _current_output_divider);
_current_output_divider = divider;
_initial_output_target = _current_output_target = _crt->allocate_write_area(640 / _current_output_divider);
if(current_output_target_) crt_->output_data((unsigned int)((current_output_target_ - initial_output_target_) * current_output_divider_), current_output_divider_);
current_output_divider_ = divider;
initial_output_target_ = current_output_target_ = crt_->allocate_write_area(640 / current_output_divider_);
}
#define get_pixel() \
if(_currentScreenAddress&32768)\
if(current_screen_address_&32768)\
{\
_currentScreenAddress = (_screenModeBaseAddress + _currentScreenAddress)&32767;\
current_screen_address_ = (screen_mode_base_address_ + current_screen_address_)&32767;\
}\
_last_pixel_byte = _ram[_currentScreenAddress];\
_currentScreenAddress = _currentScreenAddress+8
last_pixel_byte_ = ram_[current_screen_address_];\
current_screen_address_ = current_screen_address_+8
switch(_screen_mode)
switch(screen_mode_)
{
case 0: case 3:
if(_initial_output_target)
if(initial_output_target_)
{
while(number_of_cycles--)
{
get_pixel();
*(uint32_t *)_current_output_target = _paletteTables.eighty1bpp[_last_pixel_byte];
_current_output_target += 4;
_current_pixel_column++;
*(uint32_t *)current_output_target_ = palette_tables_.eighty1bpp[last_pixel_byte_];
current_output_target_ += 4;
current_pixel_column_++;
}
} else _current_output_target += 4*number_of_cycles;
} else current_output_target_ += 4*number_of_cycles;
break;
case 1:
if(_initial_output_target)
if(initial_output_target_)
{
while(number_of_cycles--)
{
get_pixel();
*(uint16_t *)_current_output_target = _paletteTables.eighty2bpp[_last_pixel_byte];
_current_output_target += 2;
_current_pixel_column++;
*(uint16_t *)current_output_target_ = palette_tables_.eighty2bpp[last_pixel_byte_];
current_output_target_ += 2;
current_pixel_column_++;
}
} else _current_output_target += 2*number_of_cycles;
} else current_output_target_ += 2*number_of_cycles;
break;
case 2:
if(_initial_output_target)
if(initial_output_target_)
{
while(number_of_cycles--)
{
get_pixel();
*_current_output_target = _paletteTables.eighty4bpp[_last_pixel_byte];
_current_output_target += 1;
_current_pixel_column++;
*current_output_target_ = palette_tables_.eighty4bpp[last_pixel_byte_];
current_output_target_ += 1;
current_pixel_column_++;
}
} else _current_output_target += number_of_cycles;
} else current_output_target_ += number_of_cycles;
break;
case 4: case 6:
if(_initial_output_target)
if(initial_output_target_)
{
if(_current_pixel_column&1)
if(current_pixel_column_&1)
{
_last_pixel_byte <<= 4;
*(uint16_t *)_current_output_target = _paletteTables.forty1bpp[_last_pixel_byte];
_current_output_target += 2;
last_pixel_byte_ <<= 4;
*(uint16_t *)current_output_target_ = palette_tables_.forty1bpp[last_pixel_byte_];
current_output_target_ += 2;
number_of_cycles--;
_current_pixel_column++;
current_pixel_column_++;
}
while(number_of_cycles > 1)
{
get_pixel();
*(uint16_t *)_current_output_target = _paletteTables.forty1bpp[_last_pixel_byte];
_current_output_target += 2;
*(uint16_t *)current_output_target_ = palette_tables_.forty1bpp[last_pixel_byte_];
current_output_target_ += 2;
_last_pixel_byte <<= 4;
*(uint16_t *)_current_output_target = _paletteTables.forty1bpp[_last_pixel_byte];
_current_output_target += 2;
last_pixel_byte_ <<= 4;
*(uint16_t *)current_output_target_ = palette_tables_.forty1bpp[last_pixel_byte_];
current_output_target_ += 2;
number_of_cycles -= 2;
_current_pixel_column+=2;
current_pixel_column_+=2;
}
if(number_of_cycles)
{
get_pixel();
*(uint16_t *)_current_output_target = _paletteTables.forty1bpp[_last_pixel_byte];
_current_output_target += 2;
_current_pixel_column++;
*(uint16_t *)current_output_target_ = palette_tables_.forty1bpp[last_pixel_byte_];
current_output_target_ += 2;
current_pixel_column_++;
}
} else _current_output_target += 2 * number_of_cycles;
} else current_output_target_ += 2 * number_of_cycles;
break;
case 5:
if(_initial_output_target)
if(initial_output_target_)
{
if(_current_pixel_column&1)
if(current_pixel_column_&1)
{
_last_pixel_byte <<= 2;
*_current_output_target = _paletteTables.forty2bpp[_last_pixel_byte];
_current_output_target += 1;
last_pixel_byte_ <<= 2;
*current_output_target_ = palette_tables_.forty2bpp[last_pixel_byte_];
current_output_target_ += 1;
number_of_cycles--;
_current_pixel_column++;
current_pixel_column_++;
}
while(number_of_cycles > 1)
{
get_pixel();
*_current_output_target = _paletteTables.forty2bpp[_last_pixel_byte];
_current_output_target += 1;
*current_output_target_ = palette_tables_.forty2bpp[last_pixel_byte_];
current_output_target_ += 1;
_last_pixel_byte <<= 2;
*_current_output_target = _paletteTables.forty2bpp[_last_pixel_byte];
_current_output_target += 1;
last_pixel_byte_ <<= 2;
*current_output_target_ = palette_tables_.forty2bpp[last_pixel_byte_];
current_output_target_ += 1;
number_of_cycles -= 2;
_current_pixel_column+=2;
current_pixel_column_+=2;
}
if(number_of_cycles)
{
get_pixel();
*_current_output_target = _paletteTables.forty2bpp[_last_pixel_byte];
_current_output_target += 1;
_current_pixel_column++;
*current_output_target_ = palette_tables_.forty2bpp[last_pixel_byte_];
current_output_target_ += 1;
current_pixel_column_++;
}
} else _current_output_target += number_of_cycles;
} else current_output_target_ += number_of_cycles;
break;
}
@ -786,10 +785,10 @@ inline void Machine::update_display()
*/
int final_line = _frameCycles >> 7;
while(_displayOutputPosition < _frameCycles)
int final_line = frame_cycles_ >> 7;
while(display_output_position_ < frame_cycles_)
{
int line = _displayOutputPosition >> 7;
int line = display_output_position_ >> 7;
// Priority one: sync.
// ===================
@ -799,8 +798,8 @@ inline void Machine::update_display()
{
// wait for the line to complete before signalling
if(final_line == line) return;
_crt->output_sync(128 * crt_cycles_multiplier);
_displayOutputPosition += 128;
crt_->output_sync(128 * crt_cycles_multiplier);
display_output_position_ += 128;
continue;
}
@ -809,9 +808,9 @@ inline void Machine::update_display()
{
// wait for the line to complete before signalling
if(final_line == line) return;
_crt->output_sync(64 * crt_cycles_multiplier);
_crt->output_blank(64 * crt_cycles_multiplier);
_displayOutputPosition += 128;
crt_->output_sync(64 * crt_cycles_multiplier);
crt_->output_blank(64 * crt_cycles_multiplier);
display_output_position_ += 128;
continue;
}
@ -820,10 +819,10 @@ inline void Machine::update_display()
{
// wait for the line to complete before signalling
if(final_line == line) return;
_crt->output_sync(9 * crt_cycles_multiplier);
_crt->output_blank(55 * crt_cycles_multiplier);
_crt->output_sync(64 * crt_cycles_multiplier);
_displayOutputPosition += 128;
crt_->output_sync(9 * crt_cycles_multiplier);
crt_->output_blank(55 * crt_cycles_multiplier);
crt_->output_sync(64 * crt_cycles_multiplier);
display_output_position_ += 128;
continue;
}
@ -839,9 +838,9 @@ inline void Machine::update_display()
line > first_graphics_line+field_divider_line+255)
{
if(final_line == line) return;
_crt->output_sync(9 * crt_cycles_multiplier);
_crt->output_blank(119 * crt_cycles_multiplier);
_displayOutputPosition += 128;
crt_->output_sync(9 * crt_cycles_multiplier);
crt_->output_blank(119 * crt_cycles_multiplier);
display_output_position_ += 128;
continue;
}
@ -849,8 +848,8 @@ inline void Machine::update_display()
// ========================================
// determine how far we're going from left to right
unsigned int this_cycle = _displayOutputPosition&127;
unsigned int final_cycle = _frameCycles&127;
unsigned int this_cycle = display_output_position_&127;
unsigned int final_cycle = frame_cycles_&127;
if(final_line > line)
{
final_cycle = 128;
@ -867,16 +866,16 @@ inline void Machine::update_display()
if(this_cycle < 9)
{
if(final_cycle < 9) return;
_crt->output_sync(9 * crt_cycles_multiplier);
_displayOutputPosition += 9;
crt_->output_sync(9 * crt_cycles_multiplier);
display_output_position_ += 9;
this_cycle = 9;
}
if(this_cycle < 24)
{
if(final_cycle < 24) return;
_crt->output_colour_burst((24-9) * crt_cycles_multiplier, _phase, 12);
_displayOutputPosition += 24-9;
crt_->output_colour_burst((24-9) * crt_cycles_multiplier, phase_, 12);
display_output_position_ += 24-9;
this_cycle = 24;
// TODO: phase shouldn't be zero on every line
}
@ -884,8 +883,8 @@ inline void Machine::update_display()
if(this_cycle < first_graphics_cycle)
{
if(final_cycle < first_graphics_cycle) return;
_crt->output_blank((first_graphics_cycle - 24) * crt_cycles_multiplier);
_displayOutputPosition += first_graphics_cycle - 24;
crt_->output_blank((first_graphics_cycle - 24) * crt_cycles_multiplier);
display_output_position_ += first_graphics_cycle - 24;
this_cycle = first_graphics_cycle;
start_pixel_line();
}
@ -894,7 +893,7 @@ inline void Machine::update_display()
{
unsigned int length_to_output = std::min(final_cycle, (first_graphics_cycle + 80)) - this_cycle;
output_pixels(length_to_output);
_displayOutputPosition += length_to_output;
display_output_position_ += length_to_output;
this_cycle += length_to_output;
}
@ -902,8 +901,8 @@ inline void Machine::update_display()
{
if(final_cycle < 128) return;
end_pixel_line();
_crt->output_blank((128 - (first_graphics_cycle + 80)) * crt_cycles_multiplier);
_displayOutputPosition += 128 - (first_graphics_cycle + 80);
crt_->output_blank((128 - (first_graphics_cycle + 80)) * crt_cycles_multiplier);
display_output_position_ += 128 - (first_graphics_cycle + 80);
this_cycle = 128;
}
}
@ -912,7 +911,7 @@ inline void Machine::update_display()
void Machine::clear_all_keys()
{
memset(_key_states, 0, sizeof(_key_states));
memset(key_states_, 0, sizeof(key_states_));
}
void Machine::set_key_state(uint16_t key, bool isPressed)
@ -924,8 +923,8 @@ void Machine::set_key_state(uint16_t key, bool isPressed)
else
{
if(isPressed)
_key_states[key >> 4] |= key&0xf;
key_states_[key >> 4] |= key&0xf;
else
_key_states[key >> 4] &= ~(key&0xf);
key_states_[key >> 4] &= ~(key&0xf);
}
}

View File

@ -80,7 +80,7 @@ class Machine:
void set_key_state(uint16_t key, bool isPressed);
void clear_all_keys();
inline void set_use_fast_tape_hack(bool activate) { _use_fast_tape_hack = activate; }
inline void set_use_fast_tape_hack(bool activate) { use_fast_tape_hack_ = activate; }
// to satisfy ConfigurationTarget::Machine
void configure_as_target(const StaticAnalyser::Target &target);
@ -92,8 +92,8 @@ class Machine:
// to satisfy CRTMachine::Machine
virtual void setup_output(float aspect_ratio);
virtual void close_output();
virtual std::shared_ptr<Outputs::CRT::CRT> get_crt() { return _crt; }
virtual std::shared_ptr<Outputs::Speaker> get_speaker() { return _speaker; }
virtual std::shared_ptr<Outputs::CRT::CRT> get_crt() { return crt_; }
virtual std::shared_ptr<Outputs::Speaker> get_speaker() { return speaker_; }
virtual void run_for_cycles(int number_of_cycles) { CPU6502::Processor<Machine>::run_for_cycles(number_of_cycles); }
// to satisfy Tape::Delegate
@ -117,25 +117,25 @@ class Machine:
inline void evaluate_interrupts();
// Things that directly constitute the memory map.
uint8_t _roms[16][16384];
bool _rom_write_masks[16];
uint8_t _os[16384], _ram[32768];
std::vector<uint8_t> _dfs, _adfs;
uint8_t roms_[16][16384];
bool rom_write_masks_[16];
uint8_t os_[16384], ram_[32768];
std::vector<uint8_t> dfs_, adfs_;
// Things affected by registers, explicitly or otherwise.
uint8_t _interrupt_status, _interrupt_control;
uint8_t _palette[16];
uint8_t _key_states[14];
ROMSlot _active_rom;
bool _keyboard_is_active, _basic_is_active;
uint8_t _screen_mode;
uint16_t _screenModeBaseAddress;
uint16_t _startScreenAddress;
uint8_t interrupt_status_, interrupt_control_;
uint8_t palette_[16];
uint8_t key_states_[14];
ROMSlot active_rom_;
bool keyboard_is_active_, basic_is_active_;
uint8_t screen_mode_;
uint16_t screen_mode_base_address_;
uint16_t start_screen_address_;
// Counters related to simultaneous subsystems
unsigned int _frameCycles, _displayOutputPosition;
unsigned int _audioOutputPosition, _audioOutputPositionError;
uint8_t _phase;
unsigned int frame_cycles_, display_output_position_;
unsigned int audio_output_position_, audio_output_position_error_;
uint8_t phase_;
struct {
uint16_t forty1bpp[256];
@ -143,30 +143,30 @@ class Machine:
uint32_t eighty1bpp[256];
uint16_t eighty2bpp[256];
uint8_t eighty4bpp[256];
} _paletteTables;
} palette_tables_;
// Display generation.
uint16_t _startLineAddress, _currentScreenAddress;
int _current_pixel_line, _current_pixel_column, _current_character_row;
uint8_t _last_pixel_byte;
bool _isBlankLine;
uint16_t start_line_address_, current_screen_address_;
int current_pixel_line_, current_pixel_column_, current_character_row_;
uint8_t last_pixel_byte_;
bool is_blank_line_;
// CRT output
uint8_t *_current_output_target, *_initial_output_target;
unsigned int _current_output_divider;
uint8_t *current_output_target_, *initial_output_target_;
unsigned int current_output_divider_;
// Tape
Tape _tape;
bool _use_fast_tape_hack;
bool _fast_load_is_in_data;
Tape tape_;
bool use_fast_tape_hack_;
bool fast_load_is_in_data_;
// Disk
std::unique_ptr<Plus3> _plus3;
std::unique_ptr<Plus3> plus3_;
bool is_holding_shift_;
// Outputs
std::shared_ptr<Outputs::CRT::CRT> _crt;
std::shared_ptr<Speaker> _speaker;
std::shared_ptr<Outputs::CRT::CRT> crt_;
std::shared_ptr<Speaker> speaker_;
bool speaker_is_enabled_;
};