// // OPL2.cpp // Clock Signal // // Created by Thomas Harte on 02/04/2020. // Copyright © 2020 Thomas Harte. all rights reserved. // #include "OPL2.hpp" #include namespace { /* Credit for the fixed register lists goes to Nuke.YKT; I found them at: https://siliconpr0n.org/archive/doku.php?id=vendor:yamaha:opl2#ym2413_instrument_rom The arrays below begin with channel 1, each line is a single channel and the format per channel is, from first byte to eighth: Bytes 1 and 2: Registers 1 and 2, i.e. modulator and carrier amplitude modulation select, vibrato select, etc. Byte 3: b7, b6: modulator key scale level b5...b0: modulator total level (inverted) Byte 4: b7: carrier key scale level b3...b0: feedback level and waveform selects as per register 4 Bytes 5, 6: Registers 4 and 5, i.e. decay and attack rate, modulator and carrier. Bytes 7, 8: Registers 6 and 7, i.e. decay-sustain level and release rate, modulator and carrier. */ constexpr uint8_t opll_patch_set[] = { 0x71, 0x61, 0x1e, 0x17, 0xd0, 0x78, 0x00, 0x17, 0x13, 0x41, 0x1a, 0x0d, 0xd8, 0xf7, 0x23, 0x13, 0x13, 0x01, 0x99, 0x00, 0xf2, 0xc4, 0x11, 0x23, 0x31, 0x61, 0x0e, 0x07, 0xa8, 0x64, 0x70, 0x27, 0x32, 0x21, 0x1e, 0x06, 0xe0, 0x76, 0x00, 0x28, 0x31, 0x22, 0x16, 0x05, 0xe0, 0x71, 0x00, 0x18, 0x21, 0x61, 0x1d, 0x07, 0x82, 0x81, 0x10, 0x07, 0x23, 0x21, 0x2d, 0x14, 0xa2, 0x72, 0x00, 0x07, 0x61, 0x61, 0x1b, 0x06, 0x64, 0x65, 0x10, 0x17, 0x41, 0x61, 0x0b, 0x18, 0x85, 0xf7, 0x71, 0x07, 0x13, 0x01, 0x83, 0x11, 0xfa, 0xe4, 0x10, 0x04, 0x17, 0xc1, 0x24, 0x07, 0xf8, 0xf8, 0x22, 0x12, 0x61, 0x50, 0x0c, 0x05, 0xc2, 0xf5, 0x20, 0x42, 0x01, 0x01, 0x55, 0x03, 0xc9, 0x95, 0x03, 0x02, 0x61, 0x41, 0x89, 0x03, 0xf1, 0xe4, 0x40, 0x13, }; constexpr uint8_t vrc7_patch_set[] = { 0x03, 0x21, 0x05, 0x06, 0xe8, 0x81, 0x42, 0x27, 0x13, 0x41, 0x14, 0x0d, 0xd8, 0xf6, 0x23, 0x12, 0x11, 0x11, 0x08, 0x08, 0xfa, 0xb2, 0x20, 0x12, 0x31, 0x61, 0x0c, 0x07, 0xa8, 0x64, 0x61, 0x27, 0x32, 0x21, 0x1e, 0x06, 0xe1, 0x76, 0x01, 0x28, 0x02, 0x01, 0x06, 0x00, 0xa3, 0xe2, 0xf4, 0xf4, 0x21, 0x61, 0x1d, 0x07, 0x82, 0x81, 0x11, 0x07, 0x23, 0x21, 0x22, 0x17, 0xa2, 0x72, 0x01, 0x17, 0x35, 0x11, 0x25, 0x00, 0x40, 0x73, 0x72, 0x01, 0xb5, 0x01, 0x0f, 0x0f, 0xa8, 0xa5, 0x51, 0x02, 0x17, 0xc1, 0x24, 0x07, 0xf8, 0xf8, 0x22, 0x12, 0x71, 0x23, 0x11, 0x06, 0x65, 0x74, 0x18, 0x16, 0x01, 0x02, 0xd3, 0x05, 0xc9, 0x95, 0x03, 0x02, 0x61, 0x63, 0x0c, 0x00, 0x94, 0xc0, 0x33, 0xf6, 0x21, 0x72, 0x0d, 0x00, 0xc1, 0xd5, 0x56, 0x06, }; constexpr uint8_t percussion_patch_set[] = { 0x01, 0x01, 0x18, 0x0f, 0xdf, 0xf8, 0x6a, 0x6d, 0x01, 0x01, 0x00, 0x00, 0xc8, 0xd8, 0xa7, 0x48, 0x05, 0x01, 0x00, 0x00, 0xf8, 0xaa, 0x59, 0x55, }; } using namespace Yamaha; // MARK: - Construction OPL2::OPL2(Personality personality, Concurrency::DeferringAsyncTaskQueue &task_queue): task_queue_(task_queue), personality_(personality) { // Populate the exponential and log-sine tables; formulas here taken from Matthew Gambrell // and Olli Niemitalo's decapping and reverse-engineering of the OPL2. for(int c = 0; c < 256; ++c) { exponential_[c] = int(round((pow(2.0, double(c) / 256.0) - 1.0) * 1024.0)); const double sine = sin((double(c) + 0.5) * M_PI/512.0); log_sin_[c] = int( round( -log(sine) / log(2.0) * 256.0 ) ); } // TODO: use this when in OPLL percussion mode. (void)percussion_patch_set; } // MARK: - Audio Generation bool OPL2::is_zero_level() { return true; } void OPL2::get_samples(std::size_t number_of_samples, std::int16_t *target) { // TODO. // out = exp(logsin(phase2 + exp(logsin(phase1) + gain1)) + gain2) /* Melodic channels are: Channel Operator 1 Operator 2 0 0 3 1 1 4 2 2 5 3 6 9 4 7 10 5 8 11 6 12 15 7 13 16 8 14 17 In percussion mode, only channels 0–5 are use as melodic, with 6, 7 and 8 being replaced by: Bass drum, using operators 12 and 15; Snare, using operator 16; Tom tom, using operator 14, Cymbal, using operator 17; and Symbol, using operator 13. */ } void OPL2::set_sample_volume_range(std::int16_t range) { // TODO. } // MARK: - Software Interface void OPL2::write(uint16_t address, uint8_t value) { if(address & 1) { switch(personality_) { case Personality::OPL2: set_opl2_register(selected_register_, value); break; default: set_opll_register(selected_register_, value); break; } } else { selected_register_ = value; } } uint8_t OPL2::read(uint16_t address) { // TODO. There's a status register where: // b7 = IRQ status (set if interrupt request ongoing) // b6 = timer 1 flag (set if timer 1 expired) // b5 = timer 2 flag return 0xff; } void OPL2::set_opll_register(uint8_t location, uint8_t value) { if(location < 8) { opll_custom_instrument_[location] = value; // Repush this instrument for any channels it's presently selected on. for(int c = 0; c < 9; ++c) { if(!(instrument_selections_[c] >> 4)) { set_opll_instrument(uint8_t(c), 0, instrument_selections_[c] & 0xf); } } return; } if(location >= 0x30 && location <= 0x38) { instrument_selections_[location - 0x30] = value; set_opll_instrument(location - 0x30, value >> 4, value & 0xf); return; } if(location == 0xe) { set_opl2_register(0xbd, value & 0x3f); return; } if(location >= 0x10 && location <= 0x18) { set_opl2_register(location - 0x10 + 0xa0, value); return; } if(location >= 0x20 && location <= 0x28) { const auto index = location = 0x20; operators_[index].hold_sustain_level = value & 0x20; // Only the bottom bit contributes to the frequency on an OPLL; on an OPL2 it's the two // bottom bits (and hold-sustain isn't set in the same register). set_opl2_register(index + 0xb0, uint8_t((value & 1) | ((value & 0xfe) << 1))); return; } } void OPL2::set_opll_instrument(uint8_t target, uint8_t source_instrument, uint8_t volume) { const uint8_t *source; if(!source_instrument) { source = opll_custom_instrument_; } else { --source_instrument; source = (source_instrument * 8) + (personality_ == Personality::OPLL ? opll_patch_set : vrc7_patch_set); } constexpr uint8_t offsets[9][2] = { {0x00, 0x03}, {0x01, 0x04}, {0x02, 0x05}, {0x08, 0x0b}, {0x09, 0x0c}, {0x0a, 0x0d}, {0x10, 0x13}, {0x11, 0x14}, {0x12, 0x15}, }; const auto carrier = offsets[target][0]; const auto modulator = offsets[target][1]; // Set waveforms — only sine and halfsine are available. set_opl2_register(0xe0 + carrier, (source[3] & 0x10) ? 1 : 0); set_opl2_register(0xe0 + modulator, (source[3] & 0x08) ? 1 : 0); // Volume on the OPLL is four bit; on the OPL2 it's six. Pair that with key scale level. set_opl2_register(0xe0 + carrier, uint8_t((source[3] & 0xc0) | (volume << 2))); // Set feedback level, which is per channel. And always set frequency modulation. set_opl2_register(0xc0 + target, uint8_t((source[3] & 0x7) << 1)); // The other values don't require any mapping. set_opl2_register(0x20 + carrier, source[0]); set_opl2_register(0x20 + modulator, source[1]); set_opl2_register(0x40 + carrier, source[2]); set_opl2_register(0x60 + carrier, source[4]); set_opl2_register(0x60 + modulator, source[5]); set_opl2_register(0x80 + carrier, source[6]); set_opl2_register(0x80 + modulator, source[7]); } void OPL2::set_opl2_register(uint8_t location, uint8_t value) { printf("OPL2 write: %02x to %d\n", value, selected_register_); // Deal with timer changes synchronously. switch(location) { case 0x02: timers_[0] = value; return; case 0x03: timers_[1] = value; return; case 0x04: timer_control_ = value; return; // TODO from register 4: // b7 = IRQ reset; // b6/b5 = timer 1/2 mask (irq enabling flags, I think?) // b4/b3 = timer 2/1 start (seemingly the opposite order to b6/b5?) default: break; } // Enqueue any changes that affect audio output. task_queue_.enqueue([this, location, value] { // // Operator modifications. // // The 18 operators are spreat out across 22 addresses; each group of // six is framed within an eight-byte area thusly: constexpr int operator_by_address[] = { 0, 1, 2, 3, 4, 5, -1, -1, 6, 7, 8, 9, 10, 11, -1, -1, 12, 13, 14, 15, 16, 17, -1, -1 }; if(location >= 0x20 && location <= 0x35) { const auto index = operator_by_address[location - 0x20]; if(index == -1) return; operators_[index].apply_amplitude_modulation = value & 0x80; operators_[index].apply_vibrato = value & 0x40; operators_[index].hold_sustain_level = value & 0x20; operators_[index].keyboard_scaling_rate = value & 0x10; operators_[index].frequency_multiple = value & 0xf; return; } if(location >= 0x40 && location <= 0x55) { const auto index = operator_by_address[location - 0x40]; if(index == -1) return; operators_[index].scaling_level = value >> 6; operators_[index].output_level = value & 0x3f; return; } if(location >= 0x60 && location <= 0x75) { const auto index = operator_by_address[location - 0x60]; if(index == -1) return; operators_[index].attack_rate = value >> 5; operators_[index].decay_rate = value & 0xf; return; } if(location >= 0x80 && location <= 0x95) { const auto index = operator_by_address[location - 0x80]; if(index == -1) return; operators_[index].sustain_level = value >> 5; operators_[index].release_rate = value & 0xf; return; } if(location >= 0xe0 && location <= 0xf5) { const auto index = operator_by_address[location - 0xe0]; if(index == -1) return; operators_[index].waveform = value & 3; return; } // // Channel modifications. // if(location >= 0xa0 && location <= 0xa8) { channels_[location - 0xa0].frequency = (channels_[location - 0xa0].frequency & ~0xff) | value; return; } if(location >= 0xb0 && location <= 0xb8) { channels_[location - 0xb0].frequency = (channels_[location - 0xb0].frequency & 0xff) | ((value & 3) << 8); channels_[location - 0xb0].octave = (value >> 2) & 0x7; channels_[location - 0xb0].key_on = value & 0x20;; return; } if(location >= 0xc0 && location <= 0xc8) { channels_[location - 0xc0].feedback_strength = (value >> 1) & 0x7; channels_[location - 0xc0].use_fm_synthesis = value & 1; return; } // // Modal modifications. // switch(location) { case 0x01: waveform_enable_ = value & 0x20; break; case 0x08: // b7: "composite sine wave mode on/off"? csm_keyboard_split_ = value; // b6: "Controls the split point of the keyboard. When 0, the keyboard split is the // second bit from the bit 8 of the F-Number. When 1, the MSB of the F-Number is used." break; case 0xbd: depth_rhythm_control_ = value; break; default: break; } }); }