// // CSMachine.m // Clock Signal // // Created by Thomas Harte on 04/01/2016. // Copyright 2016 Thomas Harte. All rights reserved. // #import "CSMachine.h" #import "CSMachine+Target.h" #include "CSROMFetcher.hpp" #include "MediaTarget.hpp" #include "JoystickMachine.hpp" #include "KeyboardMachine.hpp" #include "KeyCodes.h" #include "MachineForTarget.hpp" #include "StandardOptions.hpp" #include "Typer.hpp" #include "../../../../Activity/Observer.hpp" #import "CSStaticAnalyser+TargetVector.h" #import "NSBundle+DataResource.h" #import "NSData+StdVector.h" #include #import #include #include "ScanTarget.hpp" @interface CSMachine() - (void)speaker:(Outputs::Speaker::Speaker *)speaker didCompleteSamples:(const int16_t *)samples length:(int)length; - (void)speakerDidChangeInputClock:(Outputs::Speaker::Speaker *)speaker; - (void)addLED:(NSString *)led; @end struct LockProtectedDelegate { // Contractual promise is: machine, the pointer **and** the object **, may be accessed only // in sections protected by the machineAccessLock; NSLock *machineAccessLock; __unsafe_unretained CSMachine *machine; }; struct SpeakerDelegate: public Outputs::Speaker::Speaker::Delegate, public LockProtectedDelegate { void speaker_did_complete_samples(Outputs::Speaker::Speaker *speaker, const std::vector &buffer) override { [machineAccessLock lock]; [machine speaker:speaker didCompleteSamples:buffer.data() length:(int)buffer.size()]; [machineAccessLock unlock]; } void speaker_did_change_input_clock(Outputs::Speaker::Speaker *speaker) override { [machineAccessLock lock]; [machine speakerDidChangeInputClock:speaker]; [machineAccessLock unlock]; } }; struct ActivityObserver: public Activity::Observer { void register_led(const std::string &name) override { [machine addLED:[NSString stringWithUTF8String:name.c_str()]]; } void set_led_status(const std::string &name, bool lit) override { [machine.delegate machine:machine led:[NSString stringWithUTF8String:name.c_str()] didChangeToLit:lit]; } void announce_drive_event(const std::string &name, DriveEvent event) override { [machine.delegate machine:machine ledShouldBlink:[NSString stringWithUTF8String:name.c_str()]]; } __unsafe_unretained CSMachine *machine; }; class ScanTarget: public Outputs::Display::ScanTarget { public: void set_modals(Modals) {} Scan *get_scan() { scans_.emplace_back(); return &scans_.back(); } uint8_t *allocate_write_area(size_t required_length, size_t required_alignment) { write_area_.resize(required_length); return write_area_.data(); } void submit(bool only_if_no_allocation_failures) { scans_.clear(); } private: std::vector scans_; std::vector write_area_; }; @implementation CSMachine { SpeakerDelegate _speakerDelegate; ActivityObserver _activityObserver; NSLock *_delegateMachineAccessLock; CSStaticAnalyser *_analyser; std::unique_ptr _machine; JoystickMachine::Machine *_joystickMachine; CSJoystickManager *_joystickManager; std::bitset<65536> _depressedKeys; NSMutableArray *_leds; ScanTarget _scanTarget; } - (instancetype)initWithAnalyser:(CSStaticAnalyser *)result { self = [super init]; if(self) { _analyser = result; Machine::Error error; _machine.reset(Machine::MachineForTargets(_analyser.targets, CSROMFetcher(), error)); if(!_machine) return nil; _inputMode = (_machine->keyboard_machine() && _machine->keyboard_machine()->get_keyboard().is_exclusive()) ? CSMachineKeyboardInputModeKeyboard : CSMachineKeyboardInputModeJoystick; _leds = [[NSMutableArray alloc] init]; Activity::Source *const activity_source = _machine->activity_source(); if(activity_source) { _activityObserver.machine = self; activity_source->set_activity_observer(&_activityObserver); } _delegateMachineAccessLock = [[NSLock alloc] init]; _speakerDelegate.machine = self; _speakerDelegate.machineAccessLock = _delegateMachineAccessLock; _joystickMachine = _machine->joystick_machine(); } return self; } - (void)speaker:(Outputs::Speaker::Speaker *)speaker didCompleteSamples:(const int16_t *)samples length:(int)length { [self.audioQueue enqueueAudioBuffer:samples numberOfSamples:(unsigned int)length]; } - (void)speakerDidChangeInputClock:(Outputs::Speaker::Speaker *)speaker { [self.delegate machineSpeakerDidChangeInputClock:self]; } - (void)dealloc { // The two delegate's references to this machine are nilled out here because close_output may result // in a data flush, which might cause an audio callback, which could cause the audio queue to decide // that it's out of data, resulting in an attempt further to run the machine while it is dealloc'ing. // // They are nilled inside an explicit lock because that allows the delegates to protect their entire // call into the machine, not just the pointer access. [_delegateMachineAccessLock lock]; _speakerDelegate.machine = nil; [_delegateMachineAccessLock unlock]; // [_view performWithGLContext:^{ // @synchronized(self) { // self->_machine->crt_machine()->close_output(); // } // }]; } - (float)idealSamplingRateFromRange:(NSRange)range { @synchronized(self) { Outputs::Speaker::Speaker *speaker = _machine->crt_machine()->get_speaker(); if(speaker) { return speaker->get_ideal_clock_rate_in_range((float)range.location, (float)(range.location + range.length)); } return 0; } } - (void)setAudioSamplingRate:(float)samplingRate bufferSize:(NSUInteger)bufferSize { @synchronized(self) { [self setSpeakerDelegate:&_speakerDelegate sampleRate:samplingRate bufferSize:bufferSize]; } } - (BOOL)setSpeakerDelegate:(Outputs::Speaker::Speaker::Delegate *)delegate sampleRate:(float)sampleRate bufferSize:(NSUInteger)bufferSize { @synchronized(self) { Outputs::Speaker::Speaker *speaker = _machine->crt_machine()->get_speaker(); if(speaker) { speaker->set_output_rate(sampleRate, (int)bufferSize); speaker->set_delegate(delegate); return YES; } return NO; } } - (void)runForInterval:(NSTimeInterval)interval { @synchronized(self) { if(_joystickMachine && _joystickManager) { [_joystickManager update]; // TODO: configurable mapping from physical joypad inputs to machine inputs. // Until then, apply a default mapping. size_t c = 0; std::vector> &machine_joysticks = _joystickMachine->get_joysticks(); for(CSJoystick *joystick in _joystickManager.joysticks) { size_t target = c % machine_joysticks.size(); ++++c; // Post the first two analogue axes presented by the controller as horizontal and vertical inputs, // unless the user seems to be using a hat. // SDL will return a value in the range [-32768, 32767], so map from that to [0, 1.0] if(!joystick.hats.count || !joystick.hats[0].direction) { if(joystick.axes.count > 0) { const float x_axis = joystick.axes[0].position; machine_joysticks[target]->set_input(Inputs::Joystick::Input(Inputs::Joystick::Input::Type::Horizontal), x_axis); } if(joystick.axes.count > 1) { const float y_axis = joystick.axes[1].position; machine_joysticks[target]->set_input(Inputs::Joystick::Input(Inputs::Joystick::Input::Type::Vertical), y_axis); } } else { // Forward hats as directions; hats always override analogue inputs. for(CSJoystickHat *hat in joystick.hats) { machine_joysticks[target]->set_input(Inputs::Joystick::Input(Inputs::Joystick::Input::Type::Up), !!(hat.direction & CSJoystickHatDirectionUp)); machine_joysticks[target]->set_input(Inputs::Joystick::Input(Inputs::Joystick::Input::Type::Down), !!(hat.direction & CSJoystickHatDirectionDown)); machine_joysticks[target]->set_input(Inputs::Joystick::Input(Inputs::Joystick::Input::Type::Left), !!(hat.direction & CSJoystickHatDirectionLeft)); machine_joysticks[target]->set_input(Inputs::Joystick::Input(Inputs::Joystick::Input::Type::Right), !!(hat.direction & CSJoystickHatDirectionRight)); } } // Forward all fire buttons, mapping as a function of index. if(machine_joysticks[target]->get_number_of_fire_buttons()) { std::vector button_states((size_t)machine_joysticks[target]->get_number_of_fire_buttons()); for(CSJoystickButton *button in joystick.buttons) { if(button.isPressed) button_states[(size_t)(((int)button.index - 1) % machine_joysticks[target]->get_number_of_fire_buttons())] = true; } for(size_t index = 0; index < button_states.size(); ++index) { machine_joysticks[target]->set_input( Inputs::Joystick::Input(Inputs::Joystick::Input::Type::Fire, index), button_states[index]); } } } } _machine->crt_machine()->run_for(interval); } } - (void)setView:(CSOpenGLView *)view aspectRatio:(float)aspectRatio { _view = view; [view performWithGLContext:^{ [self setupOutputWithAspectRatio:aspectRatio]; }]; } - (void)setupOutputWithAspectRatio:(float)aspectRatio { _machine->crt_machine()->setup_output(&_scanTarget); // Since OS X v10.6, Macs have had a gamma of 2.2. // _machine->crt_machine()->get_crt()->set_output_gamma(2.2f); // _machine->crt_machine()->get_crt()->set_target_framebuffer(0); } - (void)drawViewForPixelSize:(CGSize)pixelSize onlyIfDirty:(BOOL)onlyIfDirty { // _machine->crt_machine()->get_crt()->draw_frame((unsigned int)pixelSize.width, (unsigned int)pixelSize.height, onlyIfDirty ? true : false); } - (void)paste:(NSString *)paste { KeyboardMachine::Machine *keyboardMachine = _machine->keyboard_machine(); if(keyboardMachine) keyboardMachine->type_string([paste UTF8String]); } - (NSBitmapImageRep *)imageRepresentation { // Get the current viewport to establish framebuffer size. Then determine how wide the // centre 4/3 of that would be. GLint dimensions[4]; glGetIntegerv(GL_VIEWPORT, dimensions); GLint proportionalWidth = (dimensions[3] * 4) / 3; // Grab the framebuffer contents. std::vector temporaryData(static_cast(proportionalWidth * dimensions[3] * 3)); glReadPixels((dimensions[2] - proportionalWidth) >> 1, 0, proportionalWidth, dimensions[3], GL_RGB, GL_UNSIGNED_BYTE, temporaryData.data()); // Generate an NSBitmapImageRep and populate it with a vertical flip // of the original data. NSBitmapImageRep *const result = [[NSBitmapImageRep alloc] initWithBitmapDataPlanes:NULL pixelsWide:proportionalWidth pixelsHigh:dimensions[3] bitsPerSample:8 samplesPerPixel:3 hasAlpha:NO isPlanar:NO colorSpaceName:NSDeviceRGBColorSpace bytesPerRow:3 * proportionalWidth bitsPerPixel:0]; const size_t line_size = static_cast(proportionalWidth * 3); for(GLint y = 0; y < dimensions[3]; ++y) { memcpy( &result.bitmapData[static_cast(y) * line_size], &temporaryData[static_cast(dimensions[3] - y - 1) * line_size], line_size); } return result; } - (void)applyMedia:(const Analyser::Static::Media &)media { @synchronized(self) { MediaTarget::Machine *const mediaTarget = _machine->media_target(); if(mediaTarget) mediaTarget->insert_media(media); } } - (void)setJoystickManager:(CSJoystickManager *)joystickManager { @synchronized(self) { _joystickManager = joystickManager; if(_joystickMachine) { std::vector> &machine_joysticks = _joystickMachine->get_joysticks(); for(const auto &joystick: machine_joysticks) { joystick->reset_all_inputs(); } } } } - (void)setKey:(uint16_t)key characters:(NSString *)characters isPressed:(BOOL)isPressed { auto keyboard_machine = _machine->keyboard_machine(); if(keyboard_machine && (self.inputMode == CSMachineKeyboardInputModeKeyboard || !keyboard_machine->get_keyboard().is_exclusive())) { Inputs::Keyboard::Key mapped_key = Inputs::Keyboard::Key::Help; // Make an innocuous default guess. #define BIND(source, dest) case source: mapped_key = Inputs::Keyboard::Key::dest; break; // Connect the Carbon-era Mac keyboard scancodes to Clock Signal's 'universal' enumeration in order // to pass into the platform-neutral realm. switch(key) { BIND(VK_ANSI_0, k0); BIND(VK_ANSI_1, k1); BIND(VK_ANSI_2, k2); BIND(VK_ANSI_3, k3); BIND(VK_ANSI_4, k4); BIND(VK_ANSI_5, k5); BIND(VK_ANSI_6, k6); BIND(VK_ANSI_7, k7); BIND(VK_ANSI_8, k8); BIND(VK_ANSI_9, k9); BIND(VK_ANSI_Q, Q); BIND(VK_ANSI_W, W); BIND(VK_ANSI_E, E); BIND(VK_ANSI_R, R); BIND(VK_ANSI_T, T); BIND(VK_ANSI_Y, Y); BIND(VK_ANSI_U, U); BIND(VK_ANSI_I, I); BIND(VK_ANSI_O, O); BIND(VK_ANSI_P, P); BIND(VK_ANSI_A, A); BIND(VK_ANSI_S, S); BIND(VK_ANSI_D, D); BIND(VK_ANSI_F, F); BIND(VK_ANSI_G, G); BIND(VK_ANSI_H, H); BIND(VK_ANSI_J, J); BIND(VK_ANSI_K, K); BIND(VK_ANSI_L, L); BIND(VK_ANSI_Z, Z); BIND(VK_ANSI_X, X); BIND(VK_ANSI_C, C); BIND(VK_ANSI_V, V); BIND(VK_ANSI_B, B); BIND(VK_ANSI_N, N); BIND(VK_ANSI_M, M); BIND(VK_F1, F1); BIND(VK_F2, F2); BIND(VK_F3, F3); BIND(VK_F4, F4); BIND(VK_F5, F5); BIND(VK_F6, F6); BIND(VK_F7, F7); BIND(VK_F8, F8); BIND(VK_F9, F9); BIND(VK_F10, F10); BIND(VK_F11, F11); BIND(VK_F12, F12); BIND(VK_ANSI_Keypad0, KeyPad0); BIND(VK_ANSI_Keypad1, KeyPad1); BIND(VK_ANSI_Keypad2, KeyPad2); BIND(VK_ANSI_Keypad3, KeyPad3); BIND(VK_ANSI_Keypad4, KeyPad4); BIND(VK_ANSI_Keypad5, KeyPad5); BIND(VK_ANSI_Keypad6, KeyPad6); BIND(VK_ANSI_Keypad7, KeyPad7); BIND(VK_ANSI_Keypad8, KeyPad8); BIND(VK_ANSI_Keypad9, KeyPad9); BIND(VK_ANSI_Equal, Equals); BIND(VK_ANSI_Minus, Hyphen); BIND(VK_ANSI_RightBracket, CloseSquareBracket); BIND(VK_ANSI_LeftBracket, OpenSquareBracket); BIND(VK_ANSI_Quote, Quote); BIND(VK_ANSI_Grave, BackTick); BIND(VK_ANSI_Semicolon, Semicolon); BIND(VK_ANSI_Backslash, BackSlash); BIND(VK_ANSI_Slash, ForwardSlash); BIND(VK_ANSI_Comma, Comma); BIND(VK_ANSI_Period, FullStop); BIND(VK_ANSI_KeypadDecimal, KeyPadDecimalPoint); BIND(VK_ANSI_KeypadEquals, KeyPadEquals); BIND(VK_ANSI_KeypadMultiply, KeyPadAsterisk); BIND(VK_ANSI_KeypadDivide, KeyPadSlash); BIND(VK_ANSI_KeypadPlus, KeyPadPlus); BIND(VK_ANSI_KeypadMinus, KeyPadMinus); BIND(VK_ANSI_KeypadClear, KeyPadDelete); BIND(VK_ANSI_KeypadEnter, KeyPadEnter); BIND(VK_Return, Enter); BIND(VK_Tab, Tab); BIND(VK_Space, Space); BIND(VK_Delete, BackSpace); BIND(VK_Control, LeftControl); BIND(VK_Option, LeftOption); BIND(VK_Command, LeftMeta); BIND(VK_Shift, LeftShift); BIND(VK_RightControl, RightControl); BIND(VK_RightOption, RightOption); BIND(VK_Escape, Escape); BIND(VK_CapsLock, CapsLock); BIND(VK_Home, Home); BIND(VK_End, End); BIND(VK_PageUp, PageUp); BIND(VK_PageDown, PageDown); BIND(VK_RightShift, RightShift); BIND(VK_Help, Help); BIND(VK_ForwardDelete, Delete); BIND(VK_LeftArrow, Left); BIND(VK_RightArrow, Right); BIND(VK_DownArrow, Down); BIND(VK_UpArrow, Up); } #undef BIND Inputs::Keyboard &keyboard = keyboard_machine->get_keyboard(); if(keyboard.observed_keys().find(mapped_key) != keyboard.observed_keys().end()) { // Don't pass anything on if this is not new information. if(_depressedKeys[key] == !!isPressed) return; _depressedKeys[key] = !!isPressed; // Pick an ASCII code, if any. char pressedKey = '\0'; if(characters.length) { unichar firstCharacter = [characters characterAtIndex:0]; if(firstCharacter < 128) { pressedKey = (char)firstCharacter; } } @synchronized(self) { keyboard.set_key_pressed(mapped_key, pressedKey, isPressed); } return; } } auto joystick_machine = _machine->joystick_machine(); if(self.inputMode == CSMachineKeyboardInputModeJoystick && joystick_machine) { @synchronized(self) { std::vector> &joysticks = joystick_machine->get_joysticks(); if(!joysticks.empty()) { // Convert to a C++ bool so that the following calls are resolved correctly even if overloaded. bool is_pressed = !!isPressed; switch(key) { case VK_LeftArrow: joysticks[0]->set_input(Inputs::Joystick::Input::Left, is_pressed); break; case VK_RightArrow: joysticks[0]->set_input(Inputs::Joystick::Input::Right, is_pressed); break; case VK_UpArrow: joysticks[0]->set_input(Inputs::Joystick::Input::Up, is_pressed); break; case VK_DownArrow: joysticks[0]->set_input(Inputs::Joystick::Input::Down, is_pressed); break; case VK_Space: joysticks[0]->set_input(Inputs::Joystick::Input::Fire, is_pressed); break; case VK_ANSI_A: joysticks[0]->set_input(Inputs::Joystick::Input(Inputs::Joystick::Input::Fire, 0), is_pressed); break; case VK_ANSI_S: joysticks[0]->set_input(Inputs::Joystick::Input(Inputs::Joystick::Input::Fire, 1), is_pressed); break; case VK_ANSI_D: joysticks[0]->set_input(Inputs::Joystick::Input(Inputs::Joystick::Input::Fire, 2), is_pressed); break; case VK_ANSI_F: joysticks[0]->set_input(Inputs::Joystick::Input(Inputs::Joystick::Input::Fire, 3), is_pressed); break; default: if(characters.length) { joysticks[0]->set_input(Inputs::Joystick::Input([characters characterAtIndex:0]), is_pressed); } else { joysticks[0]->set_input(Inputs::Joystick::Input::Fire, is_pressed); } break; } } } } } - (void)clearAllKeys { auto keyboard_machine = _machine->keyboard_machine(); if(keyboard_machine) { @synchronized(self) { keyboard_machine->get_keyboard().reset_all_keys(); } } auto joystick_machine = _machine->joystick_machine(); if(joystick_machine) { @synchronized(self) { for(auto &joystick : joystick_machine->get_joysticks()) { joystick->reset_all_inputs(); } } } } #pragma mark - Options - (void)setUseFastLoadingHack:(BOOL)useFastLoadingHack { Configurable::Device *configurable_device = _machine->configurable_device(); if(!configurable_device) return; @synchronized(self) { _useFastLoadingHack = useFastLoadingHack; Configurable::SelectionSet selection_set; append_quick_load_tape_selection(selection_set, useFastLoadingHack ? true : false); configurable_device->set_selections(selection_set); } } - (void)setVideoSignal:(CSMachineVideoSignal)videoSignal { Configurable::Device *configurable_device = _machine->configurable_device(); if(!configurable_device) return; @synchronized(self) { _videoSignal = videoSignal; Configurable::SelectionSet selection_set; Configurable::Display display; switch(videoSignal) { case CSMachineVideoSignalRGB: display = Configurable::Display::RGB; break; case CSMachineVideoSignalSVideo: display = Configurable::Display::SVideo; break; case CSMachineVideoSignalComposite: display = Configurable::Display::Composite; break; } append_display_selection(selection_set, display); configurable_device->set_selections(selection_set); } } - (bool)supportsVideoSignal:(CSMachineVideoSignal)videoSignal { Configurable::Device *configurable_device = _machine->configurable_device(); if(!configurable_device) return NO; // Get the options this machine provides. std::vector> options; @synchronized(self) { options = configurable_device->get_options(); } // Get the standard option for this video signal. Configurable::StandardOptions option; switch(videoSignal) { case CSMachineVideoSignalRGB: option = Configurable::DisplayRGB; break; case CSMachineVideoSignalSVideo: option = Configurable::DisplaySVideo; break; case CSMachineVideoSignalComposite: option = Configurable::DisplayComposite; break; } std::unique_ptr display_option = std::move(standard_options(option).front()); Configurable::ListOption *display_list_option = dynamic_cast(display_option.get()); NSAssert(display_list_option, @"Expected display option to be a list"); // See whether the video signal is included in the machine options. for(auto &candidate: options) { Configurable::ListOption *list_option = dynamic_cast(candidate.get()); // Both should be list options if(!list_option) continue; // Check for same name of option. if(candidate->short_name != display_option->short_name) continue; // Check that the video signal option is included. return std::find(list_option->options.begin(), list_option->options.end(), display_list_option->options.front()) != list_option->options.end(); } return NO; } - (void)setUseAutomaticTapeMotorControl:(BOOL)useAutomaticTapeMotorControl { Configurable::Device *configurable_device = _machine->configurable_device(); if(!configurable_device) return; @synchronized(self) { _useAutomaticTapeMotorControl = useAutomaticTapeMotorControl; Configurable::SelectionSet selection_set; append_automatic_tape_motor_control_selection(selection_set, useAutomaticTapeMotorControl ? true : false); configurable_device->set_selections(selection_set); } } - (NSString *)userDefaultsPrefix { // Assumes that the first machine in the targets list is the source of user defaults. std::string name = Machine::ShortNameForTargetMachine(_analyser.targets.front()->machine); return [[NSString stringWithUTF8String:name.c_str()] lowercaseString]; } - (BOOL)canInsertMedia { return !!_machine->media_target(); } #pragma mark - Special machines - (CSAtari2600 *)atari2600 { return [[CSAtari2600 alloc] initWithAtari2600:_machine->raw_pointer() owner:self]; } - (CSZX8081 *)zx8081 { return [[CSZX8081 alloc] initWithZX8081:_machine->raw_pointer() owner:self]; } #pragma mark - Input device queries - (BOOL)hasJoystick { return !!_machine->joystick_machine(); } - (BOOL)hasExclusiveKeyboard { return !!_machine->keyboard_machine() && _machine->keyboard_machine()->get_keyboard().is_exclusive(); } #pragma mark - Activity observation - (void)addLED:(NSString *)led { [_leds addObject:led]; } - (NSArray *)leds { return _leds; } @end