// // DMAController.cpp // Clock Signal // // Created by Thomas Harte on 26/10/2019. // Copyright © 2019 Thomas Harte. All rights reserved. // #include "DMAController.hpp" #include using namespace Atari::ST; namespace { enum Control: uint16_t { Direction = 0x100, DRQSource = 0x80, SectorCountSelect = 0x10, CPUTarget = 0x08 }; } DMAController::DMAController() { fdc_.set_delegate(this); fdc_.set_clocking_hint_observer(this); } uint16_t DMAController::read(int address) { switch(address & 7) { // Reserved. default: break; // Disk controller or sector count. case 2: if(control_ & Control::SectorCountSelect) { return uint16_t((byte_count_ + 511) >> 9); // Assumed here: the count is of sectors remaining, i.e. it decrements // only when a sector is complete. } else { if(control_ & Control::CPUTarget) { return 0xffff; } else { return 0xff00 | fdc_.get_register(control_ >> 1); } } break; // DMA status. case 3: // TODO: should DRQ come from the HDC if that mode is selected? return 0xfff8 | (error_ ? 0 : 1) | (byte_count_ ? 2 : 0) | (fdc_.get_data_request_line() ? 4 : 0); // DMA addressing. case 4: return uint16_t(0xff00 | ((address_ >> 16) & 0xff)); case 5: return uint16_t(0xff00 | ((address_ >> 8) & 0xff)); case 6: return uint16_t(0xff00 | ((address_ >> 0) & 0xff)); } return 0xffff; } void DMAController::write(int address, uint16_t value) { switch(address & 7) { // Reserved. default: break; // Disk controller or sector count. case 2: if(control_ & Control::SectorCountSelect) { byte_count_ = (value & 0xff) << 9; // The computer provides a sector count; that times 512 is a byte count. // TODO: if this is a write-mode DMA operation, try to fill both buffers, ASAP. } else { if(control_ & Control::CPUTarget) { // TODO: HDC. } else { fdc_.set_register(control_ >> 1, uint8_t(value)); } } break; // DMA control; meaning is: // // b0: unused // b1, b2 = address lines for FDC access. // b3 = 1 => CPU HDC access; 0 => CPU FDC access. // b4 = 1 => sector count access; 0 => [F/H]DC access. // b5: unused. // b6 = officially, 1 => DMA off; 0 => DMA on. Ignored in real hardware. // b7 = 1 => FDC DRQs being observed; 0 => HDC access DRQs being observed. // b8 = 1 => DMA is writing to [F/H]DC; 0 => DMA is reading. Changing value resets DMA state. // // All other bits: undefined. case 3: // Check for a DMA state reset. if((control_^value) & Control::Direction) { bytes_received_ = active_buffer_ = 0; error_ = false; byte_count_ = 0; } control_ = value; break; // DMA addressing. case 4: address_ = int((address_ & 0x00ffff) | ((value & 0xff) << 16)); break; case 5: address_ = int((address_ & 0xff00ff) | ((value & 0xff) << 8)); break; case 6: address_ = int((address_ & 0xffff00) | ((value & 0xff) << 0)); break; } } void DMAController::set_floppy_drive_selection(bool drive1, bool drive2, bool side2) { fdc_.set_floppy_drive_selection(drive1, drive2, side2); } void DMAController::set_floppy_disk(std::shared_ptr disk, size_t drive) { fdc_.drives_[drive]->set_disk(disk); } void DMAController::run_for(HalfCycles duration) { running_time_ += duration; fdc_.run_for(duration.flush()); } void DMAController::wd1770_did_change_output(WD::WD1770 *) { // Check for a change in interrupt state. const bool old_interrupt_line = interrupt_line_; interrupt_line_ = fdc_.get_interrupt_request_line(); if(interrupt_delegate_ && interrupt_line_ != old_interrupt_line) { interrupt_delegate_->dma_controller_did_change_interrupt_status(this); } // Check for a change in DRQ state, if it's the FDC that is currently being watched. if(fdc_.get_data_request_line()) { if(!(control_ & Control::DRQSource)) return; if(control_ & Control::Direction) { // TODO: DMA is supposed to be helping with a write. } else { // DMA is enabling a read. // Read from the data register into the active buffer. buffer_[active_buffer_][bytes_received_] = fdc_.get_register(3); ++bytes_received_; if(bytes_received_ == 16) { // TODO: BusReq and eventual deposit into RAM? active_buffer_ ^= 1; bytes_received_ = 0; } } } } void DMAController::set_interrupt_delegate(InterruptDelegate *delegate) { interrupt_delegate_ = delegate; } bool DMAController::get_interrupt_line() { return interrupt_line_; } void DMAController::set_component_prefers_clocking(ClockingHint::Source *, ClockingHint::Preference) { update_clocking_observer(); } ClockingHint::Preference DMAController::preferred_clocking() { return (fdc_.preferred_clocking() == ClockingHint::Preference::None) ? ClockingHint::Preference::None : ClockingHint::Preference::RealTime; }