// // ZX8081.cpp // Clock Signal // // Created by Thomas Harte on 04/06/2017. // Copyright © 2017 Thomas Harte. All rights reserved. // #include "ZX8081.hpp" #include "../ConfigurationTarget.hpp" #include "../CRTMachine.hpp" #include "../KeyboardMachine.hpp" #include "../../Components/AY38910/AY38910.hpp" #include "../../Processors/Z80/Z80.hpp" #include "../../Storage/Tape/Tape.hpp" #include "../../Storage/Tape/Parsers/ZX8081.hpp" #include "../../ClockReceiver/ForceInline.hpp" #include "../../Configurable/StandardOptions.hpp" #include "../Utility/MemoryFuzzer.hpp" #include "../Utility/Typer.hpp" #include "../../Outputs/Speaker/Implementation/LowpassSpeaker.hpp" #include "../../Analyser/Static/ZX8081/Target.hpp" #include "Keyboard.hpp" #include "Video.hpp" #include #include #include #include namespace { // The clock rate is 3.25Mhz. const unsigned int ZX8081ClockRate = 3250000; } // TODO: // Quiksilva sound support: // 7FFFh.W PSG index // 7FFEh.R/W PSG data namespace ZX8081 { enum ROMType: uint8_t { ZX80 = 0, ZX81 }; std::vector> get_options() { return Configurable::standard_options( static_cast(Configurable::AutomaticTapeMotorControl | Configurable::QuickLoadTape) ); } template class ConcreteMachine: public CRTMachine::Machine, public ConfigurationTarget::Machine, public KeyboardMachine::Machine, public Configurable::Device, public Utility::TypeRecipient, public CPU::Z80::BusHandler, public Machine { public: ConcreteMachine() : z80_(*this), tape_player_(ZX8081ClockRate), ay_(audio_queue_), speaker_(ay_) { set_clock_rate(ZX8081ClockRate); speaker_.set_input_rate(static_cast(ZX8081ClockRate) / 2.0f); clear_all_keys(); } ~ConcreteMachine() { audio_queue_.flush(); } forceinline HalfCycles perform_machine_cycle(const CPU::Z80::PartialMachineCycle &cycle) { const HalfCycles previous_counter = horizontal_counter_; horizontal_counter_ += cycle.length; time_since_ay_update_ += cycle.length; if(previous_counter < vsync_start_ && horizontal_counter_ >= vsync_start_) { video_->run_for(vsync_start_ - previous_counter); set_hsync(true); line_counter_ = (line_counter_ + 1) & 7; if(nmi_is_enabled_) { z80_.set_non_maskable_interrupt_line(true); } video_->run_for(horizontal_counter_ - vsync_start_); } else if(previous_counter < vsync_end_ && horizontal_counter_ >= vsync_end_) { video_->run_for(vsync_end_ - previous_counter); set_hsync(false); if(nmi_is_enabled_) { z80_.set_non_maskable_interrupt_line(false); z80_.set_wait_line(false); } video_->run_for(horizontal_counter_ - vsync_end_); } else { video_->run_for(cycle.length); } if(is_zx81_) horizontal_counter_ %= HalfCycles(Cycles(207)); if(!tape_advance_delay_) { tape_player_.run_for(cycle.length); } else { tape_advance_delay_ = std::max(tape_advance_delay_ - cycle.length, HalfCycles(0)); } if(nmi_is_enabled_ && !z80_.get_halt_line() && z80_.get_non_maskable_interrupt_line()) { z80_.set_wait_line(true); } if(!cycle.is_terminal()) { return Cycles(0); } const uint16_t address = cycle.address ? *cycle.address : 0; bool is_opcode_read = false; switch(cycle.operation) { case CPU::Z80::PartialMachineCycle::Output: if(!(address & 2)) nmi_is_enabled_ = false; if(!(address & 1)) nmi_is_enabled_ = is_zx81_; if(!nmi_is_enabled_) { // Line counter reset is held low while vsync is active; simulate that lazily by performing // an instant reset upon the transition from active to inactive. if(vsync_) line_counter_ = 0; set_vsync(false); } // The below emulates the ZonX AY expansion device. if(is_zx81) { if((address&0xef) == 0xcf) { ay_set_register(*cycle.value); } else if((address&0xef) == 0x0f) { ay_set_data(*cycle.value); } } break; case CPU::Z80::PartialMachineCycle::Input: { uint8_t value = 0xff; if(!(address&1)) { if(!nmi_is_enabled_) set_vsync(true); uint16_t mask = 0x100; for(int c = 0; c < 8; c++) { if(!(address & mask)) value &= key_states_[c]; mask <<= 1; } value &= ~(tape_player_.get_input() ? 0x00 : 0x80); } // The below emulates the ZonX AY expansion device. if(is_zx81) { if((address&0xef) == 0x0f) { value &= ay_read_data(); } } *cycle.value = value; } break; case CPU::Z80::PartialMachineCycle::Interrupt: // resetting event is M1 and IOREQ both simultaneously having leading edges; // that happens 2 cycles before the end of INTACK. So the timer was reset and // now has advanced twice. horizontal_counter_ = HalfCycles(2); *cycle.value = 0xff; break; case CPU::Z80::PartialMachineCycle::Refresh: // The ZX80 and 81 signal an interrupt while refresh is active and bit 6 of the refresh // address is low. The Z80 signals a refresh, providing the refresh address during the // final two cycles of an opcode fetch. Therefore communicate a transient signalling // of the IRQ line if necessary. if(!(address & 0x40)) { z80_.set_interrupt_line(true, Cycles(-2)); z80_.set_interrupt_line(false); } if(has_latched_video_byte_) { std::size_t char_address = static_cast((address & 0xfe00) | ((latched_video_byte_ & 0x3f) << 3) | line_counter_); const uint8_t mask = (latched_video_byte_ & 0x80) ? 0x00 : 0xff; if(char_address < ram_base_) { latched_video_byte_ = rom_[char_address & rom_mask_] ^ mask; } else { latched_video_byte_ = ram_[address & ram_mask_] ^ mask; } video_->output_byte(latched_video_byte_); has_latched_video_byte_ = false; } break; case CPU::Z80::PartialMachineCycle::ReadOpcode: // Check for use of the fast tape hack. if(use_fast_tape_hack_ && address == tape_trap_address_) { const uint64_t prior_offset = tape_player_.get_tape()->get_offset(); const int next_byte = parser_.get_next_byte(tape_player_.get_tape()); if(next_byte != -1) { const uint16_t hl = z80_.get_value_of_register(CPU::Z80::Register::HL); ram_[hl & ram_mask_] = static_cast(next_byte); *cycle.value = 0x00; z80_.set_value_of_register(CPU::Z80::Register::ProgramCounter, tape_return_address_ - 1); // Assume that having read one byte quickly, we're probably going to be asked to read // another shortly. Therefore, temporarily disable the tape motor for 1000 cycles in order // to avoid fighting with real time. This is a stop-gap fix. tape_advance_delay_ = 1000; return 0; } else { tape_player_.get_tape()->set_offset(prior_offset); } } // Check for automatic tape control. if(use_automatic_tape_motor_control_) { tape_player_.set_motor_control((address >= automatic_tape_motor_start_address_) && (address < automatic_tape_motor_end_address_)); } is_opcode_read = true; case CPU::Z80::PartialMachineCycle::Read: if(address < ram_base_) { *cycle.value = rom_[address & rom_mask_]; } else { const uint8_t value = ram_[address & ram_mask_]; // If this is an M1 cycle reading from above the 32kb mark and HALT is not // currently active, latch for video output and return a NOP. Otherwise, // just return the value as read. if(is_opcode_read && address&0x8000 && !(value & 0x40) && !z80_.get_halt_line()) { latched_video_byte_ = value; has_latched_video_byte_ = true; *cycle.value = 0; } else *cycle.value = value; } break; case CPU::Z80::PartialMachineCycle::Write: if(address >= ram_base_) { ram_[address & ram_mask_] = *cycle.value; } break; default: break; } if(typer_) typer_->run_for(cycle.length); return HalfCycles(0); } forceinline void flush() { video_->flush(); if(is_zx81) { update_audio(); audio_queue_.perform(); } } void setup_output(float aspect_ratio) override final { video_.reset(new Video); } void close_output() override final { video_.reset(); } Outputs::CRT::CRT *get_crt() override final { return video_->get_crt(); } Outputs::Speaker::Speaker *get_speaker() override final { return is_zx81 ? &speaker_ : nullptr; } void run_for(const Cycles cycles) override final { z80_.run_for(cycles); } void configure_as_target(const Analyser::Static::Target *target) override final { auto *const zx8081_target = dynamic_cast(target); is_zx81_ = zx8081_target->is_ZX81; if(is_zx81_) { rom_ = zx81_rom_; tape_trap_address_ = 0x37c; tape_return_address_ = 0x380; vsync_start_ = HalfCycles(32); vsync_end_ = HalfCycles(64); automatic_tape_motor_start_address_ = 0x0340; automatic_tape_motor_end_address_ = 0x03c3; } else { rom_ = zx8081_target->ZX80_uses_ZX81_ROM ? zx81_rom_ : zx80_rom_; tape_trap_address_ = 0x220; tape_return_address_ = 0x248; vsync_start_ = HalfCycles(26); vsync_end_ = HalfCycles(66); automatic_tape_motor_start_address_ = 0x0206; automatic_tape_motor_end_address_ = 0x024d; } rom_mask_ = static_cast(rom_.size() - 1); switch(zx8081_target->memory_model) { case Analyser::Static::ZX8081::Target::MemoryModel::Unexpanded: ram_.resize(1024); ram_base_ = 16384; ram_mask_ = 1023; break; case Analyser::Static::ZX8081::Target::MemoryModel::SixteenKB: ram_.resize(16384); ram_base_ = 16384; ram_mask_ = 16383; break; case Analyser::Static::ZX8081::Target::MemoryModel::SixtyFourKB: ram_.resize(65536); ram_base_ = 8192; ram_mask_ = 65535; break; } Memory::Fuzz(ram_); if(!zx8081_target->loading_command.empty()) { type_string(zx8081_target->loading_command); } insert_media(target->media); } bool insert_media(const Analyser::Static::Media &media) override final { if(!media.tapes.empty()) { tape_player_.set_tape(media.tapes.front()); } set_use_fast_tape(); return !media.tapes.empty(); } void type_string(const std::string &string) override final { std::unique_ptr mapper(new CharacterMapper(is_zx81_)); Utility::TypeRecipient::add_typer(string, std::move(mapper)); } // Obtains the system ROMs. bool set_rom_fetcher(const std::function>>(const std::string &machine, const std::vector &names)> &roms_with_names) override { const auto roms = roms_with_names( "ZX8081", { "zx80.rom", "zx81.rom", }); for(std::size_t index = 0; index < roms.size(); ++index) { if(!roms[index]) return false; } zx80_rom_ = std::move(*roms[0]); zx81_rom_ = std::move(*roms[1]); zx80_rom_.resize(4096); zx81_rom_.resize(8192); return true; } // MARK: - Keyboard void set_key_state(uint16_t key, bool is_pressed) override final { if(is_pressed) key_states_[key >> 8] &= static_cast(~key); else key_states_[key >> 8] |= static_cast(key); } void clear_all_keys() override final { memset(key_states_, 0xff, 8); } // MARK: - Tape control void set_use_automatic_tape_motor_control(bool enabled) { use_automatic_tape_motor_control_ = enabled; if(!enabled) { tape_player_.set_motor_control(false); } } void set_tape_is_playing(bool is_playing) override final { tape_player_.set_motor_control(is_playing); } bool get_tape_is_playing() override final { return tape_player_.get_motor_control(); } // MARK: - Typer timing HalfCycles get_typer_delay() override final { return Cycles(7000000); } HalfCycles get_typer_frequency() override final { return Cycles(390000); } KeyboardMapper *get_keyboard_mapper() override { return &keyboard_mapper_; } // MARK: - Configuration options. std::vector> get_options() override { return ZX8081::get_options(); } void set_selections(const Configurable::SelectionSet &selections_by_option) override { bool quickload; if(Configurable::get_quick_load_tape(selections_by_option, quickload)) { allow_fast_tape_hack_ = quickload; set_use_fast_tape(); } bool autotapemotor; if(Configurable::get_automatic_tape_motor_control_selection(selections_by_option, autotapemotor)) { set_use_automatic_tape_motor_control(autotapemotor); } } Configurable::SelectionSet get_accurate_selections() override { Configurable::SelectionSet selection_set; Configurable::append_quick_load_tape_selection(selection_set, false); Configurable::append_automatic_tape_motor_control_selection(selection_set, false); return selection_set; } Configurable::SelectionSet get_user_friendly_selections() override { Configurable::SelectionSet selection_set; Configurable::append_quick_load_tape_selection(selection_set, true); Configurable::append_automatic_tape_motor_control_selection(selection_set, true); return selection_set; } private: CPU::Z80::Processor z80_; std::shared_ptr