// // AY-3-8910.cpp // Clock Signal // // Created by Thomas Harte on 14/10/2016. // Copyright © 2016 Thomas Harte. All rights reserved. // #include "AY38910.hpp" using namespace GI; AY38910::AY38910() : _selected_register(0), _channel_output{0, 0, 0}, _channel_dividers{0, 0, 0}, _tone_generator_controls{0, 0, 0}, _noise_shift_register(0xffff), _noise_divider(0), _noise_output(0), _envelope_divider(0), _envelope_period(0) { _output_registers[8] = _output_registers[9] = _output_registers[10] = 0; // set up envelope lookup tables for(int c = 0; c < 16; c++) { for(int p = 0; p < 32; p++) { switch(c) { case 0: case 1: case 2: case 3: case 9: _envelope_shapes[c][p] = (p < 16) ? (p^0xf) : 0; _envelope_overflow_masks[c] = 0x1f; break; case 4: case 5: case 6: case 7: case 15: _envelope_shapes[c][p] = (p < 16) ? p : 0; _envelope_overflow_masks[c] = 0x1f; break; case 8: _envelope_shapes[c][p] = (p & 0xf) ^ 0xf; _envelope_overflow_masks[c] = 0x00; break; case 12: _envelope_shapes[c][p] = (p & 0xf); _envelope_overflow_masks[c] = 0x00; break; case 10: _envelope_shapes[c][p] = (p & 0xf) ^ ((p < 16) ? 0xf : 0x0); _envelope_overflow_masks[c] = 0x00; break; case 14: _envelope_shapes[c][p] = (p & 0xf) ^ ((p < 16) ? 0x0 : 0xf); _envelope_overflow_masks[c] = 0x00; break; case 11: _envelope_shapes[c][p] = (p < 16) ? (p^0xf) : 0xf; _envelope_overflow_masks[c] = 0x1f; break; case 13: _envelope_shapes[c][p] = (p < 16) ? p : 0xf; _envelope_overflow_masks[c] = 0x1f; break; } } } } void AY38910::set_clock_rate(double clock_rate) { set_input_rate((float)clock_rate); } void AY38910::get_samples(unsigned int number_of_samples, int16_t *target) { for(int c = 0; c < number_of_samples; c++) { // a master divider divides the clock by 16 int former_master_divider = _master_divider; _master_divider++; int resulting_steps = ((_master_divider ^ former_master_divider) >> 4) & 1; int did_underflow; #define shift(x, r) \ x -= resulting_steps; \ did_underflow = (x >> 15)&1; \ x = did_underflow * r + (did_underflow^1) * x; #define step_channel(c) \ shift(_channel_dividers[c], _tone_generator_controls[c]); \ _channel_output[c] ^= did_underflow; // update the tone channels step_channel(0); step_channel(1); step_channel(2); // ... the noise generator shift(_noise_divider, _output_registers[6]&0x1f); _noise_output ^= did_underflow&_noise_shift_register&1; _noise_shift_register |= ((_noise_shift_register ^ (_noise_shift_register >> 3))&1) << 17; _noise_shift_register >>= did_underflow; // ... and the envelope generator shift(_envelope_divider, _envelope_period); _envelope_position += did_underflow; int refill = _envelope_overflow_masks[_output_registers[13]] * (_envelope_position >> 5); _envelope_position = (_envelope_position & 0x1f) | refill; int envelope_volume = _envelope_shapes[_output_registers[13]][_envelope_position & 0xf]; #undef step_channel #undef shift #define level(c, tb, nb) \ (((((_output_registers[7] >> tb)&1)^1) & _channel_output[c]) | ((((_output_registers[7] >> nb)&1)^1) & _noise_output)) ^ 1 int channel_levels[3] = { level(0, 0, 1), level(1, 2, 3), level(2, 4, 5), }; #undef level #define channel_volume(c) \ ((_output_registers[c] >> 4)&1) * envelope_volume + (((_output_registers[c] >> 4)&1)^1) * (_output_registers[c]&0x1f) int volumes[3] = { channel_volume(8), channel_volume(9), channel_volume(10) }; #undef channel_volume target[c] = (int16_t)(( volumes[0] * channel_levels[0] + volumes[1] * channel_levels[1] + volumes[2] * channel_levels[2] ) * 512); } } void AY38910::skip_samples(unsigned int number_of_samples) { // TODO // printf("Skip %d\n", number_of_samples); } void AY38910::select_register(uint8_t r) { _selected_register = r & 0xf; } void AY38910::set_register_value(uint8_t value) { _registers[_selected_register] = value; if(_selected_register < 14) { int selected_register = _selected_register; enqueue([=] () { uint8_t masked_value = value; switch(selected_register) { case 0: case 2: case 4: _tone_generator_controls[selected_register >> 1] = (_tone_generator_controls[selected_register >> 1] & ~0xff) | value; break; case 1: case 3: case 5: _tone_generator_controls[selected_register >> 1] = (_tone_generator_controls[selected_register >> 1] & 0xff) | (uint16_t)((value&0xf) << 8); break; case 11: _envelope_period = (_envelope_period & ~0xff) | value; // printf("e: %d", _envelope_period); break; case 12: _envelope_period = (_envelope_period & 0xff) | (int)(value << 8); // printf("e: %d", _envelope_period); break; case 13: masked_value &= 0xf; _envelope_position = 0; // printf("envelope %d\n", masked_value); break; } _output_registers[selected_register] = masked_value; }); } } uint8_t AY38910::get_register_value() { return _registers[_selected_register]; } uint8_t AY38910::get_port_output(bool port_b) { return _registers[port_b ? 15 : 14]; } void AY38910::set_data_input(uint8_t r) { _data_input = r; } uint8_t AY38910::get_data_output() { return _data_output; } void AY38910::set_control_lines(ControlLines control_lines) { ControlState new_state; switch((int)control_lines) { default: new_state = Inactive; break; case (int)(BCDIR | BC2 | BC1): case BCDIR: case BC1: new_state = LatchAddress; break; case (int)(BC2 | BC1): new_state = Read; break; case (int)(BCDIR | BC2): new_state = Write; break; } if(new_state != _control_state) { _control_state = new_state; switch(new_state) { default: break; case LatchAddress: select_register(_data_input); break; case Write: set_register_value(_data_input); break; case Read: _data_output = get_register_value(); break; } } }