// // IntermediateShader.cpp // Clock Signal // // Created by Thomas Harte on 28/04/2016. // Copyright © 2016 Thomas Harte. All rights reserved. // #include "IntermediateShader.hpp" #include #include #include #include "../../../../SignalProcessing/FIRFilter.hpp" using namespace OpenGL; namespace { const OpenGL::Shader::AttributeBinding bindings[] = { {"inputPosition", 0}, {"outputPosition", 1}, {"phaseAndAmplitude", 2}, {"phaseTime", 3}, {nullptr} }; } std::unique_ptr IntermediateShader::make_shader(const std::string &fragment_shader, bool use_usampler, bool input_is_inputPosition) { const char *sampler_type = use_usampler ? "usampler2D" : "sampler2D"; const char *input_variable = input_is_inputPosition ? "inputPosition" : "outputPosition"; char *vertex_shader; asprintf(&vertex_shader, "#version 150\n" "in vec2 inputStart;" "in vec2 outputStart;" "in vec2 ends;" "in vec3 phaseTimeAndAmplitude;" "uniform ivec2 outputTextureSize;" "uniform float extension;" "uniform %s texID;" "uniform float offsets[5];" "uniform vec2 widthScalers;" "uniform float inputVerticalOffset;" "uniform float outputVerticalOffset;" "uniform float textureHeightDivisor;" "out vec3 phaseAndAmplitudeVarying;" "out vec2 inputPositionsVarying[11];" "out vec2 iInputPositionVarying;" "out vec2 delayLinePositionVarying;" "void main(void)" "{" // odd vertices are on the left, even on the right "float extent = float(gl_VertexID & 1);" "float longitudinal = float((gl_VertexID & 2) >> 1);" // inputPosition.x is either inputStart.x or ends.x, depending on whether it is on the left or the right; // outputPosition.x is either outputStart.x or ends.y; // .ys are inputStart.y and outputStart.y respectively "vec2 inputPosition = vec2(mix(inputStart.x, ends.x, extent)*widthScalers[0], inputStart.y + inputVerticalOffset);" "vec2 outputPosition = vec2(mix(outputStart.x, ends.y, extent)*widthScalers[1], outputStart.y + outputVerticalOffset);" "inputPosition.y += longitudinal;" "outputPosition.y += longitudinal;" // extension is the amount to extend both the input and output by to add a full colour cycle at each end "vec2 extensionVector = vec2(extension, 0.0) * 2.0 * (extent - 0.5);" // extended[Input/Output]Position are [input/output]Position with the necessary applied extension "vec2 extendedInputPosition = %s + extensionVector;" "vec2 extendedOutputPosition = outputPosition + extensionVector;" // keep iInputPositionVarying in whole source pixels, scale mappedInputPosition to the ordinary normalised range "vec2 textureSize = vec2(textureSize(texID, 0));" "iInputPositionVarying = extendedInputPosition;" "vec2 mappedInputPosition = extendedInputPosition / textureSize;" // + vec2(0.0, 0.5) // setup input positions spaced as per the supplied offsets; these are for filtering where required "inputPositionsVarying[0] = mappedInputPosition - (vec2(5.0, 0.0) / textureSize);" "inputPositionsVarying[1] = mappedInputPosition - (vec2(4.0, 0.0) / textureSize);" "inputPositionsVarying[2] = mappedInputPosition - (vec2(3.0, 0.0) / textureSize);" "inputPositionsVarying[3] = mappedInputPosition - (vec2(2.0, 0.0) / textureSize);" "inputPositionsVarying[4] = mappedInputPosition - (vec2(1.0, 0.0) / textureSize);" "inputPositionsVarying[5] = mappedInputPosition;" "inputPositionsVarying[6] = mappedInputPosition + (vec2(1.0, 0.0) / textureSize);" "inputPositionsVarying[7] = mappedInputPosition + (vec2(2.0, 0.0) / textureSize);" "inputPositionsVarying[8] = mappedInputPosition + (vec2(3.0, 0.0) / textureSize);" "inputPositionsVarying[9] = mappedInputPosition + (vec2(4.0, 0.0) / textureSize);" "inputPositionsVarying[10] = mappedInputPosition + (vec2(5.0, 0.0) / textureSize);" "delayLinePositionVarying = mappedInputPosition - vec2(0.0, 1.0);" // setup phaseAndAmplitudeVarying.x as colour burst subcarrier phase, in radians; // setup phaseAndAmplitudeVarying.y as colour burst amplitude; // setup phaseAndAmplitudeVarying.z as 1 / (colour burst amplitude), or 0.0 if amplitude is 0.0; "phaseAndAmplitudeVarying.x = (extendedOutputPosition.x + (phaseTimeAndAmplitude.x / 64.0)) * 0.5 * 3.141592654;" "phaseAndAmplitudeVarying.y = phaseTimeAndAmplitude.y / 255.0;" "phaseAndAmplitudeVarying.z = (phaseAndAmplitudeVarying.y > 0.0) ? 1.0 / phaseAndAmplitudeVarying.y : 0.0;" // determine output position by scaling the output position according to the texture size "vec2 eyePosition = 2.0*(extendedOutputPosition / outputTextureSize) - vec2(1.0);" "gl_Position = vec4(eyePosition, 0.0, 1.0);" "}", sampler_type, input_variable); std::unique_ptr shader(new IntermediateShader(vertex_shader, fragment_shader, bindings)); free(vertex_shader); return shader; } std::unique_ptr IntermediateShader::make_source_conversion_shader(const std::string &composite_shader, const std::string &rgb_shader) { char *derived_composite_sample = nullptr; const char *composite_sample = composite_shader.c_str(); if(!composite_shader.size()) { asprintf(&derived_composite_sample, "%s\n" "uniform mat3 rgbToLumaChroma;" "float composite_sample(usampler2D texID, vec2 coordinate, vec2 iCoordinate, float phase, float amplitude)" "{" "vec3 rgbColour = clamp(rgb_sample(texID, coordinate, iCoordinate), vec3(0.0), vec3(1.0));" "vec3 lumaChromaColour = rgbToLumaChroma * rgbColour;" "vec2 quadrature = vec2(cos(phase), -sin(phase)) * amplitude;" "return dot(lumaChromaColour, vec3(1.0 - amplitude, quadrature));" "}", rgb_shader.c_str()); composite_sample = derived_composite_sample; } char *fragment_shader; asprintf(&fragment_shader, "#version 150\n" "in vec2 inputPositionsVarying[11];" "in vec2 iInputPositionVarying;" "in vec3 phaseAndAmplitudeVarying;" "out vec4 fragColour;" "uniform usampler2D texID;" "\n%s\n" "void main(void)" "{" "fragColour = vec4(composite_sample(texID, inputPositionsVarying[5], iInputPositionVarying, phaseAndAmplitudeVarying.x, phaseAndAmplitudeVarying.y));" "}" , composite_sample); free(derived_composite_sample); std::unique_ptr shader = make_shader(fragment_shader, true, true); free(fragment_shader); return shader; } std::unique_ptr IntermediateShader::make_rgb_source_shader(const std::string &rgb_shader) { char *fragment_shader; asprintf(&fragment_shader, "#version 150\n" "in vec2 inputPositionsVarying[11];" "in vec2 iInputPositionVarying;" "in vec3 phaseAndAmplitudeVarying;" "out vec3 fragColour;" "uniform usampler2D texID;" "\n%s\n" "void main(void)" "{" "fragColour = rgb_sample(texID, inputPositionsVarying[5], iInputPositionVarying);" "}" , rgb_shader.c_str()); std::unique_ptr shader = make_shader(fragment_shader, true, true); free(fragment_shader); return shader; } std::unique_ptr IntermediateShader::make_chroma_luma_separation_shader() { return make_shader( "#version 150\n" "in vec3 phaseAndAmplitudeVarying;" "in vec2 inputPositionsVarying[11];" "out vec3 fragColour;" "uniform sampler2D texID;" "void main(void)" "{" "vec4 samples = vec4(" "texture(texID, inputPositionsVarying[3]).r," "texture(texID, inputPositionsVarying[4]).r," "texture(texID, inputPositionsVarying[5]).r," "texture(texID, inputPositionsVarying[6]).r" ");" "float luminance = mix(dot(samples, vec4(0.25)), dot(samples, vec4(0.0, 0.16, 0.66, 0.16)), step(phaseAndAmplitudeVarying.z, 0.0));" // define chroma to be whatever was here, minus luma "float chrominance = 0.5 * (samples.z - luminance) * phaseAndAmplitudeVarying.z;" "luminance /= (1.0 - phaseAndAmplitudeVarying.y);" // split choma colours here, as the most direct place, writing out // RGB = (luma, chroma.x, chroma.y) "vec2 quadrature = vec2(cos(phaseAndAmplitudeVarying.x), -sin(phaseAndAmplitudeVarying.x));" "fragColour = vec3(luminance, vec2(0.5) + (chrominance * quadrature));" "}",false, false); } std::unique_ptr IntermediateShader::make_chroma_filter_shader() { return make_shader( "#version 150\n" "in vec2 inputPositionsVarying[11];" "uniform vec4 weights[3];" "out vec3 fragColour;" "uniform sampler2D texID;" "uniform mat3 lumaChromaToRGB;" "void main(void)" "{" "vec3 samples[] = vec3[](" "texture(texID, inputPositionsVarying[3]).rgb," "texture(texID, inputPositionsVarying[4]).rgb," "texture(texID, inputPositionsVarying[5]).rgb," "texture(texID, inputPositionsVarying[6]).rgb" ");" "vec4 chromaChannel1 = vec4(samples[0].g, samples[1].g, samples[2].g, samples[3].g);" "vec4 chromaChannel2 = vec4(samples[0].b, samples[1].b, samples[2].b, samples[3].b);" "vec3 lumaChromaColour = vec3(samples[2].r," "dot(chromaChannel1, vec4(0.25))," "dot(chromaChannel2, vec4(0.25))" ");" "vec3 lumaChromaColourInRange = (lumaChromaColour - vec3(0.0, 0.5, 0.5)) * vec3(1.0, 2.0, 2.0);" "fragColour = lumaChromaToRGB * lumaChromaColourInRange;" "}", false, false); } std::unique_ptr IntermediateShader::make_rgb_filter_shader() { return make_shader( "#version 150\n" "in vec2 inputPositionsVarying[11];" "uniform vec4 weights[3];" "out vec3 fragColour;" "uniform sampler2D texID;" "void main(void)" "{" "vec3 samples[] = vec3[](" "texture(texID, inputPositionsVarying[0]).rgb," "texture(texID, inputPositionsVarying[1]).rgb," "texture(texID, inputPositionsVarying[2]).rgb," "texture(texID, inputPositionsVarying[3]).rgb," "texture(texID, inputPositionsVarying[4]).rgb," "texture(texID, inputPositionsVarying[5]).rgb," "texture(texID, inputPositionsVarying[6]).rgb," "texture(texID, inputPositionsVarying[7]).rgb," "texture(texID, inputPositionsVarying[8]).rgb," "texture(texID, inputPositionsVarying[9]).rgb," "texture(texID, inputPositionsVarying[10]).rgb" ");" "vec4 channel1[] = vec4[](" "vec4(samples[0].r, samples[1].r, samples[2].r, samples[3].r)," "vec4(samples[4].r, samples[5].r, samples[6].r, samples[7].r)," "vec4(samples[8].r, samples[9].r, samples[10].r, 0.0)" ");" "vec4 channel2[] = vec4[](" "vec4(samples[0].g, samples[1].g, samples[2].g, samples[3].g)," "vec4(samples[4].g, samples[5].g, samples[6].g, samples[7].g)," "vec4(samples[8].g, samples[9].g, samples[10].g, 0.0)" ");" "vec4 channel3[] = vec4[](" "vec4(samples[0].b, samples[1].b, samples[2].b, samples[3].b)," "vec4(samples[4].b, samples[5].b, samples[6].b, samples[7].b)," "vec4(samples[8].b, samples[9].b, samples[10].b, 0.0)" ");" "fragColour = vec3(" "dot(vec3(" "dot(channel1[0], weights[0])," "dot(channel1[1], weights[1])," "dot(channel1[2], weights[2])" "), vec3(1.0))," "dot(vec3(" "dot(channel2[0], weights[0])," "dot(channel2[1], weights[1])," "dot(channel2[2], weights[2])" "), vec3(1.0))," "dot(vec3(" "dot(channel3[0], weights[0])," "dot(channel3[1], weights[1])," "dot(channel3[2], weights[2])" "), vec3(1.0))" ");" "}", false, false); } void IntermediateShader::set_output_size(unsigned int output_width, unsigned int output_height) { set_uniform("outputTextureSize", (GLint)output_width, (GLint)output_height); } void IntermediateShader::set_source_texture_unit(GLenum unit) { set_uniform("texID", (GLint)(unit - GL_TEXTURE0)); } void IntermediateShader::set_filter_coefficients(float sampling_rate, float cutoff_frequency) { // The process below: the source texture will have bilinear filtering enabled; so by // sampling at non-integral offsets from the centre the shader can get a weighted sum // of two source pixels, then scale that once, to do two taps per sample. However // that works only if the two coefficients being joined have the same sign. So the // number of usable taps is between 11 and 21 depending on the values that come out. // Perform a linear search for the highest number of taps we can use with 11 samples. GLfloat weights[12]; GLfloat offsets[5]; unsigned int taps = 11; // unsigned int taps = 21; while(1) { float coefficients[21]; SignalProcessing::FIRFilter luminance_filter(taps, sampling_rate, 0.0f, cutoff_frequency, SignalProcessing::FIRFilter::DefaultAttenuation); luminance_filter.get_coefficients(coefficients); // int sample = 0; // int c = 0; memset(weights, 0, sizeof(float)*12); memset(offsets, 0, sizeof(float)*5); int halfSize = (taps >> 1); for(int c = 0; c < taps; c++) { if(c < 5) offsets[c] = (halfSize - c); weights[c] = coefficients[c]; } break; // int halfSize = (taps >> 1); // while(c < halfSize && sample < 5) { // offsets[sample] = (float)(halfSize - c); // if((coefficients[c] < 0.0f) == (coefficients[c+1] < 0.0f) && c+1 < (taps >> 1)) { // weights[sample] = coefficients[c] + coefficients[c+1]; // offsets[sample] -= (coefficients[c+1] / weights[sample]); // c += 2; // } else { // weights[sample] = coefficients[c]; // c++; // } // sample ++; // } // if(c == halfSize) { // i.e. we finished combining inputs before we ran out of space // weights[sample] = coefficients[c]; // for(int c = 0; c < sample; c++) { // weights[sample+c+1] = weights[sample-c-1]; // } // break; // } taps -= 2; } set_uniform("weights", 4, 3, weights); set_uniform("offsets", 1, 5, offsets); } void IntermediateShader::set_separation_frequency(float sampling_rate, float colour_burst_frequency) { set_filter_coefficients(sampling_rate, colour_burst_frequency); } void IntermediateShader::set_extension(float extension) { set_uniform("extension", extension); } void IntermediateShader::set_colour_conversion_matrices(float *fromRGB, float *toRGB) { set_uniform_matrix("lumaChromaToRGB", 3, false, toRGB); set_uniform_matrix("rgbToLumaChroma", 3, false, fromRGB); } void IntermediateShader::set_width_scalers(float input_scaler, float output_scaler) { set_uniform("widthScalers", input_scaler, output_scaler); } void IntermediateShader::set_is_double_height(bool is_double_height, float input_offset, float output_offset) { set_uniform("textureHeightDivisor", is_double_height ? 2.0f : 1.0f); set_uniform("inputVerticalOffset", input_offset); set_uniform("outputVerticalOffset", output_offset); }