// // IntermediateShader.cpp // Clock Signal // // Created by Thomas Harte on 28/04/2016. // Copyright © 2016 Thomas Harte. All rights reserved. // #include "IntermediateShader.hpp" #include #include #include #include "../../../../SignalProcessing/FIRFilter.hpp" using namespace OpenGL; namespace { const OpenGL::Shader::AttributeBinding bindings[] = { {"inputPosition", 0}, {"outputPosition", 1}, {"phaseAmplitudeAndOffset", 2}, {"phaseTime", 3}, {nullptr} }; } std::unique_ptr IntermediateShader::make_shader(const char *fragment_shader, bool use_usampler, bool input_is_inputPosition) { const char *sampler_type = use_usampler ? "usampler2D" : "sampler2D"; const char *input_variable = input_is_inputPosition ? "inputPosition" : "outputPosition"; char *vertex_shader; asprintf(&vertex_shader, "#version 150\n" "in vec2 inputPosition;" "in vec2 outputPosition;" "in vec3 phaseAmplitudeAndOffset;" "in float phaseTime;" "uniform float phaseCyclesPerTick;" "uniform ivec2 outputTextureSize;" "uniform float extension;" "uniform %s texID;" "uniform float offsets[5];" "out vec2 phaseAndAmplitudeVarying;" "out vec2 inputPositionsVarying[11];" "out vec2 iInputPositionVarying;" "out vec2 delayLinePositionVarying;" "void main(void)" "{" "vec2 extensionVector = vec2(extension, 0.0) * 2.0 * (phaseAmplitudeAndOffset.z - 0.5);" "vec2 extendedInputPosition = %s + extensionVector;" "vec2 extendedOutputPosition = outputPosition + extensionVector;" "vec2 textureSize = vec2(textureSize(texID, 0));" "iInputPositionVarying = extendedInputPosition;" "vec2 mappedInputPosition = (extendedInputPosition + vec2(0.0, 0.5)) / textureSize;" "inputPositionsVarying[0] = mappedInputPosition - (vec2(offsets[4], 0.0) / textureSize);" "inputPositionsVarying[1] = mappedInputPosition - (vec2(offsets[3], 0.0) / textureSize);" "inputPositionsVarying[2] = mappedInputPosition - (vec2(offsets[2], 0.0) / textureSize);" "inputPositionsVarying[3] = mappedInputPosition - (vec2(offsets[1], 0.0) / textureSize);" "inputPositionsVarying[4] = mappedInputPosition - (vec2(offsets[0], 0.0) / textureSize);" "inputPositionsVarying[5] = mappedInputPosition;" "inputPositionsVarying[6] = mappedInputPosition + (vec2(offsets[0], 0.0) / textureSize);" "inputPositionsVarying[7] = mappedInputPosition + (vec2(offsets[1], 0.0) / textureSize);" "inputPositionsVarying[8] = mappedInputPosition + (vec2(offsets[2], 0.0) / textureSize);" "inputPositionsVarying[9] = mappedInputPosition + (vec2(offsets[3], 0.0) / textureSize);" "inputPositionsVarying[10] = mappedInputPosition + (vec2(offsets[4], 0.0) / textureSize);" "delayLinePositionVarying = mappedInputPosition - vec2(0.0, 1.0);" "phaseAndAmplitudeVarying.x = (phaseCyclesPerTick * (extendedOutputPosition.x - phaseTime) + phaseAmplitudeAndOffset.x) * 2.0 * 3.141592654;" "phaseAndAmplitudeVarying.y = 0.33;" "vec2 eyePosition = 2.0*(extendedOutputPosition / outputTextureSize) - vec2(1.0) + vec2(0.5)/textureSize;" "gl_Position = vec4(eyePosition, 0.0, 1.0);" "}", sampler_type, input_variable); std::unique_ptr shader = std::unique_ptr(new IntermediateShader(vertex_shader, fragment_shader, bindings)); free(vertex_shader); shader->texIDUniform = shader->get_uniform_location("texID"); shader->outputTextureSizeUniform = shader->get_uniform_location("outputTextureSize"); shader->phaseCyclesPerTickUniform = shader->get_uniform_location("phaseCyclesPerTick"); shader->extensionUniform = shader->get_uniform_location("extension"); shader->weightsUniform = shader->get_uniform_location("weights"); shader->rgbToLumaChromaUniform = shader->get_uniform_location("rgbToLumaChroma"); shader->lumaChromaToRGBUniform = shader->get_uniform_location("lumaChromaToRGB"); shader->offsetsUniform = shader->get_uniform_location("offsets"); return shader; } std::unique_ptr IntermediateShader::make_source_conversion_shader(const char *composite_shader, const char *rgb_shader) { char *composite_sample = (char *)composite_shader; if(!composite_sample) { asprintf(&composite_sample, "%s\n" "uniform mat3 rgbToLumaChroma;" "float composite_sample(usampler2D texID, vec2 coordinate, vec2 iCoordinate, float phase, float amplitude)" "{" "vec3 rgbColour = clamp(rgb_sample(texID, coordinate, iCoordinate), vec3(0.0), vec3(1.0));" "vec3 lumaChromaColour = rgbToLumaChroma * rgbColour;" "vec2 quadrature = vec2(cos(phase), -sin(phase)) * amplitude;" "return dot(lumaChromaColour, vec3(1.0 - amplitude, quadrature));" "}", rgb_shader); } char *fragment_shader; asprintf(&fragment_shader, "#version 150\n" "in vec2 inputPositionsVarying[11];" "in vec2 iInputPositionVarying;" "in vec2 phaseAndAmplitudeVarying;" "out vec4 fragColour;" "uniform usampler2D texID;" "\n%s\n" "void main(void)" "{" "fragColour = vec4(composite_sample(texID, inputPositionsVarying[5], iInputPositionVarying, phaseAndAmplitudeVarying.x, phaseAndAmplitudeVarying.y));" "}" , composite_sample); if(!composite_shader) free(composite_sample); std::unique_ptr shader = make_shader(fragment_shader, true, true); free(fragment_shader); return shader; } std::unique_ptr IntermediateShader::make_chroma_luma_separation_shader() { return make_shader( "#version 150\n" "in vec2 phaseAndAmplitudeVarying;" "in vec2 inputPositionsVarying[11];" "uniform vec4 weights[3];" "out vec3 fragColour;" "uniform sampler2D texID;" "void main(void)" "{" "vec4 samples[3] = vec4[](" "vec4(" "texture(texID, inputPositionsVarying[0]).r," "texture(texID, inputPositionsVarying[1]).r," "texture(texID, inputPositionsVarying[2]).r," "texture(texID, inputPositionsVarying[3]).r" ")," "vec4(" "texture(texID, inputPositionsVarying[4]).r," "texture(texID, inputPositionsVarying[5]).r," "texture(texID, inputPositionsVarying[6]).r," "texture(texID, inputPositionsVarying[7]).r" ")," "vec4(" "texture(texID, inputPositionsVarying[8]).r," "texture(texID, inputPositionsVarying[9]).r," "texture(texID, inputPositionsVarying[10]).r," "0.0" ")" ");" "float luminance = " "dot(vec3(" "dot(samples[0], weights[0])," "dot(samples[1], weights[1])," "dot(samples[2], weights[2])" "), vec3(1.0)) / (1.0 - phaseAndAmplitudeVarying.y);" "float chrominance = 0.5 * (samples[1].y - luminance) / phaseAndAmplitudeVarying.y;" "vec2 quadrature = vec2(cos(phaseAndAmplitudeVarying.x), -sin(phaseAndAmplitudeVarying.x));" "fragColour = vec3(luminance, vec2(0.5) + (chrominance * quadrature));" "}",false, false); } std::unique_ptr IntermediateShader::make_chroma_filter_shader() { return make_shader( "#version 150\n" "in vec2 inputPositionsVarying[11];" "uniform vec4 weights[3];" "out vec3 fragColour;" "uniform sampler2D texID;" "uniform mat3 lumaChromaToRGB;" "void main(void)" "{" "vec3 centreSample = texture(texID, inputPositionsVarying[5]).rgb;" "vec2 samples[] = vec2[](" "texture(texID, inputPositionsVarying[0]).gb - vec2(0.5)," "texture(texID, inputPositionsVarying[1]).gb - vec2(0.5)," "texture(texID, inputPositionsVarying[2]).gb - vec2(0.5)," "texture(texID, inputPositionsVarying[3]).gb - vec2(0.5)," "texture(texID, inputPositionsVarying[4]).gb - vec2(0.5)," "centreSample.gb - vec2(0.5)," "texture(texID, inputPositionsVarying[6]).gb - vec2(0.5)," "texture(texID, inputPositionsVarying[7]).gb - vec2(0.5)," "texture(texID, inputPositionsVarying[8]).gb - vec2(0.5)," "texture(texID, inputPositionsVarying[9]).gb - vec2(0.5)," "texture(texID, inputPositionsVarying[10]).gb - vec2(0.5)" ");" "vec4 channel1[] = vec4[](" "vec4(samples[0].r, samples[1].r, samples[2].r, samples[3].r)," "vec4(samples[4].r, samples[5].r, samples[6].r, samples[7].r)," "vec4(samples[8].r, samples[9].r, samples[10].r, 0.0)" ");" "vec4 channel2[] = vec4[](" "vec4(samples[0].g, samples[1].g, samples[2].g, samples[3].g)," "vec4(samples[4].g, samples[5].g, samples[6].g, samples[7].g)," "vec4(samples[8].g, samples[9].g, samples[10].g, 0.0)" ");" "vec3 lumaChromaColour = vec3(centreSample.r," "dot(vec3(" "dot(channel1[0], weights[0])," "dot(channel1[1], weights[1])," "dot(channel1[2], weights[2])" "), vec3(1.0)) + 0.5," "dot(vec3(" "dot(channel2[0], weights[0])," "dot(channel2[1], weights[1])," "dot(channel2[2], weights[2])" "), vec3(1.0)) + 0.5" ");" "vec3 lumaChromaColourInRange = (lumaChromaColour - vec3(0.0, 0.5, 0.5)) * vec3(1.0, 2.0, 2.0);" "fragColour = lumaChromaToRGB * lumaChromaColourInRange;" "}", false, false); } void IntermediateShader::set_output_size(unsigned int output_width, unsigned int output_height) { bind(); glUniform2i(outputTextureSizeUniform, (GLint)output_width, (GLint)output_height); } void IntermediateShader::set_source_texture_unit(GLenum unit) { bind(); glUniform1i(texIDUniform, (GLint)(unit - GL_TEXTURE0)); } void IntermediateShader::set_filter_coefficients(float sampling_rate, float cutoff_frequency) { bind(); // The process below: the source texture will have bilinear filtering enabled; so by // sampling at non-integral offsets from the centre the shader can get a weighted sum // of two source pixels, then scale that once, to do two taps per sample. However // that works only if the two coefficients being joined have the same sign. So the // number of usable taps is between 11 and 21 depending on the values that come out. // Perform a linear search for the highest number of taps we can use with 11 samples. float weights[12]; float offsets[5]; unsigned int taps = 21; while(1) { float coefficients[21]; SignalProcessing::FIRFilter luminance_filter(taps, sampling_rate, 0.0f, cutoff_frequency, SignalProcessing::FIRFilter::DefaultAttenuation); luminance_filter.get_coefficients(coefficients); int sample = 0; int c = 0; memset(weights, 0, sizeof(float)*12); while(c < (taps >> 1) && sample < 5) { if((coefficients[c] < 0.0f) == (coefficients[c+1] < 0.0f) && c+1 < (taps >> 1)) { weights[sample] = coefficients[c] + coefficients[c+1]; offsets[sample] = (float)c + 1.0f + (coefficients[c+1] / weights[sample]); c += 2; } else { offsets[sample] = (float)c + 1.0f; weights[sample] = coefficients[c]; c++; } sample ++; } if(c == (taps >> 1)) { weights[sample] = coefficients[c]; for(int c = 0; c < sample; c++) { weights[sample+c+1] = weights[sample-c-1]; } break; } taps -= 2; } glUniform4fv(weightsUniform, 3, weights); glUniform1fv(offsetsUniform, 5, offsets); } void IntermediateShader::set_phase_cycles_per_sample(float phase_cycles_per_sample, bool extend_runs_to_full_cycle) { bind(); glUniform1f(phaseCyclesPerTickUniform, phase_cycles_per_sample); glUniform1f(extensionUniform, extend_runs_to_full_cycle ? ceilf(1.0f / phase_cycles_per_sample) : 0.0f); } void IntermediateShader::set_colour_conversion_matrices(float *fromRGB, float *toRGB) { bind(); glUniformMatrix3fv(lumaChromaToRGBUniform, 1, GL_FALSE, toRGB); glUniformMatrix3fv(rgbToLumaChromaUniform, 1, GL_FALSE, fromRGB); }