// // Fetch.hpp // Clock Signal // // Created by Thomas Harte on 01/01/2023. // Copyright © 2023 Thomas Harte. All rights reserved. // #ifndef Fetch_hpp #define Fetch_hpp /* Fetching routines follow below; they obey the following rules: 1) input is a start position and an end position; they should perform the proper operations for the period: start <= time < end. 2) times are measured relative to a 172-cycles-per-line clock (so: they directly count access windows on the TMS and Master System). 3) time 0 is the beginning of the access window immediately after the last pattern/data block fetch that would contribute to this line, in a normal 32-column mode. So: * it's cycle 309 on Mattias' TMS diagram; * it's cycle 1238 on his V9938 diagram; * it's after the last background render block in Mask of Destiny's Master System timing diagram. That division point was selected, albeit arbitrarily, because it puts all the tile fetches for a single line into the same [0, 171] period. 4) all of these functions are templated with a `use_end` parameter. That will be true if end is < 172, false otherwise. So functions can use it to eliminate should-exit-not checks, for the more usual path of execution. Provided for the benefit of the methods below: * the function external_slot(), which will perform any pending VRAM read/write. * the macros slot(n) and external_slot(n) which can be used to schedule those things inside a switch(start)-based implementation. All functions should just spool data to intermediary storage. This is because for most VDPs there is a decoupling between fetch pattern and output pattern, and it's neater to keep the same division for the exceptions. */ #define slot(n) \ if(use_end && end == n) return; \ [[fallthrough]]; \ case n #define external_slot(n) \ slot(n): do_external_slot(to_internal(n)); #define external_slots_2(n) \ external_slot(n); \ external_slot(n+1); #define external_slots_4(n) \ external_slots_2(n); \ external_slots_2(n+2); #define external_slots_8(n) \ external_slots_4(n); \ external_slots_4(n+4); #define external_slots_16(n) \ external_slots_8(n); \ external_slots_8(n+8); #define external_slots_32(n) \ external_slots_16(n); \ external_slots_16(n+16); // MARK: - TMS9918 template template void Base::fetch_tms_refresh(int start, int end) { #define refresh(location) \ slot(location): \ external_slot(location+1); #define refreshes_2(location) \ refresh(location); \ refresh(location+2); #define refreshes_4(location) \ refreshes_2(location); \ refreshes_2(location+4); #define refreshes_8(location) \ refreshes_4(location); \ refreshes_4(location+8); switch(start) { default: assert(false); /* 44 external slots */ external_slots_32(0) external_slots_8(32) external_slots_4(40) /* 64 refresh/external slot pairs (= 128 windows) */ refreshes_8(44); refreshes_8(60); refreshes_8(76); refreshes_8(92); refreshes_8(108); refreshes_8(124); refreshes_8(140); refreshes_8(156); return; } #undef refreshes_8 #undef refreshes_4 #undef refreshes_2 #undef refresh } template template void Base::fetch_tms_text(int start, int end) { #define fetch_tile_name(location, column) slot(location): line_buffer.names[column].offset = ram_[row_base + column]; #define fetch_tile_pattern(location, column) slot(location): line_buffer.patterns[column][0] = ram_[row_offset + size_t(line_buffer.names[column].offset << 3)]; #define fetch_column(location, column) \ fetch_tile_name(location, column); \ external_slot(location+1); \ fetch_tile_pattern(location+2, column); #define fetch_columns_2(location, column) \ fetch_column(location, column); \ fetch_column(location+3, column+1); #define fetch_columns_4(location, column) \ fetch_columns_2(location, column); \ fetch_columns_2(location+6, column+2); #define fetch_columns_8(location, column) \ fetch_columns_4(location, column); \ fetch_columns_4(location+12, column+4); LineBuffer &line_buffer = line_buffers_[fetch_pointer_.row]; const size_t row_base = pattern_name_address_ & (0x3c00 | size_t(fetch_pointer_.row >> 3) * 40); const size_t row_offset = pattern_generator_table_address_ & (0x3800 | (fetch_pointer_.row & 7)); switch(start) { default: assert(false); /* 47 external slots (= 47 windows) */ external_slots_32(0) external_slots_8(32) external_slots_4(40) external_slots_2(44) external_slot(46) /* 40 column fetches (= 120 windows) */ fetch_columns_8(47, 0); fetch_columns_8(71, 8); fetch_columns_8(95, 16); fetch_columns_8(119, 24); fetch_columns_8(143, 32); /* 5 more external slots */ external_slots_4(167); external_slot(171); return; } #undef fetch_columns_8 #undef fetch_columns_4 #undef fetch_columns_2 #undef fetch_column #undef fetch_tile_pattern #undef fetch_tile_name } template template void Base::fetch_tms_character(int start, int end) { #define sprite_fetch_coordinates(location, sprite) \ slot(location): \ slot(location+1): \ line_buffer.active_sprites[sprite].x = \ ram_[\ sprite_attribute_table_address_ & size_t(0x3f81 | (line_buffer.active_sprites[sprite].index << 2))\ ]; // This implementation doesn't refetch Y; it's unclear to me // whether it's refetched. #define sprite_fetch_graphics(location, sprite) \ slot(location): \ slot(location+1): \ slot(location+2): \ slot(location+3): {\ const uint8_t name = ram_[\ sprite_attribute_table_address_ & size_t(0x3f82 | (line_buffer.active_sprites[sprite].index << 2))\ ] & (sprites_16x16_ ? ~3 : ~0);\ line_buffer.active_sprites[sprite].image[2] = ram_[\ sprite_attribute_table_address_ & size_t(0x3f83 | (line_buffer.active_sprites[sprite].index << 2))\ ];\ line_buffer.active_sprites[sprite].x -= (line_buffer.active_sprites[sprite].image[2] & 0x80) >> 2;\ const size_t graphic_location = sprite_generator_table_address_ & size_t(0x3800 | (name << 3) | line_buffer.active_sprites[sprite].row); \ line_buffer.active_sprites[sprite].image[0] = ram_[graphic_location];\ line_buffer.active_sprites[sprite].image[1] = ram_[graphic_location+16];\ } #define sprite_fetch_block(location, sprite) \ sprite_fetch_coordinates(location, sprite) \ sprite_fetch_graphics(location+2, sprite) #define sprite_y_read(location, sprite) \ slot(location): posit_sprite(sprite_selection_buffer, sprite, ram_[sprite_attribute_table_address_ & (((sprite) << 2) | 0x3f80)], fetch_pointer_.row); #define fetch_tile_name(column) line_buffer.names[column].offset = ram_[(row_base + column) & 0x3fff]; #define fetch_tile(column) {\ line_buffer.patterns[column][1] = ram_[(colour_base + size_t((line_buffer.names[column].offset << 3) >> colour_name_shift)) & 0x3fff]; \ line_buffer.patterns[column][0] = ram_[(pattern_base + size_t(line_buffer.names[column].offset << 3)) & 0x3fff]; \ } #define background_fetch_block(location, column, sprite) \ slot(location): fetch_tile_name(column) \ external_slot(location+1); \ slot(location+2): \ slot(location+3): fetch_tile(column) \ slot(location+4): fetch_tile_name(column+1) \ sprite_y_read(location+5, sprite); \ slot(location+6): \ slot(location+7): fetch_tile(column+1) \ slot(location+8): fetch_tile_name(column+2) \ sprite_y_read(location+9, sprite+1); \ slot(location+10): \ slot(location+11): fetch_tile(column+2) \ slot(location+12): fetch_tile_name(column+3) \ sprite_y_read(location+13, sprite+2); \ slot(location+14): \ slot(location+15): fetch_tile(column+3) LineBuffer &line_buffer = line_buffers_[fetch_pointer_.row]; LineBuffer &sprite_selection_buffer = line_buffers_[(fetch_pointer_.row + 1) % mode_timing_.total_lines]; const size_t row_base = pattern_name_address_ & (size_t((fetch_pointer_.row << 2)&~31) | 0x3c00); size_t pattern_base = pattern_generator_table_address_; size_t colour_base = colour_table_address_; int colour_name_shift = 6; if(screen_mode_ == ScreenMode::Graphics) { // If this is high resolution mode, allow the row number to affect the pattern and colour addresses. pattern_base &= size_t(0x2000 | ((fetch_pointer_.row & 0xc0) << 5)); colour_base &= size_t(0x2000 | ((fetch_pointer_.row & 0xc0) << 5)); colour_base += size_t(fetch_pointer_.row & 7); colour_name_shift = 0; } else { colour_base &= size_t(0xffc0); pattern_base &= size_t(0x3800); } if(screen_mode_ == ScreenMode::MultiColour) { pattern_base += size_t((fetch_pointer_.row >> 2) & 7); } else { pattern_base += size_t(fetch_pointer_.row & 7); } switch(start) { default: assert(false); external_slots_2(0); sprite_fetch_block(2, 0); sprite_fetch_block(8, 1); sprite_fetch_coordinates(14, 2); external_slots_4(16); external_slot(20); sprite_fetch_graphics(21, 2); sprite_fetch_block(25, 3); slot(31): sprite_selection_buffer.reset_sprite_collection(); do_external_slot(to_internal(31)); external_slots_2(32); external_slot(34); sprite_y_read(35, 0); sprite_y_read(36, 1); sprite_y_read(37, 2); sprite_y_read(38, 3); sprite_y_read(39, 4); sprite_y_read(40, 5); sprite_y_read(41, 6); sprite_y_read(42, 7); background_fetch_block(43, 0, 8); background_fetch_block(59, 4, 11); background_fetch_block(75, 8, 14); background_fetch_block(91, 12, 17); background_fetch_block(107, 16, 20); background_fetch_block(123, 20, 23); background_fetch_block(139, 24, 26); background_fetch_block(155, 28, 29); return; } #undef background_fetch_block #undef fetch_tile #undef fetch_tile_name #undef sprite_y_read #undef sprite_fetch_block #undef sprite_fetch_graphics #undef sprite_fetch_coordinates } // MARK: - Master System template template void Base::fetch_sms(int start, int end) { if constexpr (is_sega_vdp(personality)) { #define sprite_fetch(sprite) {\ line_buffer.active_sprites[sprite].x = \ ram_[\ Storage::sprite_attribute_table_address_ & size_t(0x3f80 | (line_buffer.active_sprites[sprite].index << 1))\ ] - (Storage::shift_sprites_8px_left_ ? 8 : 0); \ const uint8_t name = ram_[\ Storage::sprite_attribute_table_address_ & size_t(0x3f81 | (line_buffer.active_sprites[sprite].index << 1))\ ] & (sprites_16x16_ ? ~1 : ~0);\ const size_t graphic_location = Storage::sprite_generator_table_address_ & size_t(0x2000 | (name << 5) | (line_buffer.active_sprites[sprite].row << 2)); \ line_buffer.active_sprites[sprite].image[0] = ram_[graphic_location]; \ line_buffer.active_sprites[sprite].image[1] = ram_[graphic_location+1]; \ line_buffer.active_sprites[sprite].image[2] = ram_[graphic_location+2]; \ line_buffer.active_sprites[sprite].image[3] = ram_[graphic_location+3]; \ } #define sprite_fetch_block(location, sprite) \ slot(location): \ slot(location+1): \ slot(location+2): \ slot(location+3): \ slot(location+4): \ slot(location+5): \ sprite_fetch(sprite);\ sprite_fetch(sprite+1); #define sprite_y_read(location, sprite) \ slot(location): \ posit_sprite(sprite_selection_buffer, sprite, ram_[Storage::sprite_attribute_table_address_ & ((sprite) | 0x3f00)], fetch_pointer_.row); \ posit_sprite(sprite_selection_buffer, sprite+1, ram_[Storage::sprite_attribute_table_address_ & ((sprite + 1) | 0x3f00)], fetch_pointer_.row); \ #define fetch_tile_name(column, row_info) {\ const size_t scrolled_column = (column - horizontal_offset) & 0x1f;\ const size_t address = row_info.pattern_address_base + (scrolled_column << 1); \ line_buffer.names[column].flags = ram_[address+1]; \ line_buffer.names[column].offset = size_t( \ (((line_buffer.names[column].flags&1) << 8) | ram_[address]) << 5 \ ) + row_info.sub_row[(line_buffer.names[column].flags&4) >> 2]; \ } #define fetch_tile(column) \ line_buffer.patterns[column][0] = ram_[line_buffer.names[column].offset]; \ line_buffer.patterns[column][1] = ram_[line_buffer.names[column].offset+1]; \ line_buffer.patterns[column][2] = ram_[line_buffer.names[column].offset+2]; \ line_buffer.patterns[column][3] = ram_[line_buffer.names[column].offset+3]; #define background_fetch_block(location, column, sprite, row_info) \ slot(location): fetch_tile_name(column, row_info) \ external_slot(location+1); \ slot(location+2): \ slot(location+3): \ slot(location+4): \ fetch_tile(column) \ fetch_tile_name(column+1, row_info) \ sprite_y_read(location+5, sprite); \ slot(location+6): \ slot(location+7): \ slot(location+8): \ fetch_tile(column+1) \ fetch_tile_name(column+2, row_info) \ sprite_y_read(location+9, sprite+2); \ slot(location+10): \ slot(location+11): \ slot(location+12): \ fetch_tile(column+2) \ fetch_tile_name(column+3, row_info) \ sprite_y_read(location+13, sprite+4); \ slot(location+14): \ slot(location+15): fetch_tile(column+3) // Determine the coarse horizontal scrolling offset; this isn't applied on the first two lines if the programmer has requested it. LineBuffer &line_buffer = line_buffers_[fetch_pointer_.row]; LineBuffer &sprite_selection_buffer = line_buffers_[(fetch_pointer_.row + 1) % mode_timing_.total_lines]; const int horizontal_offset = (fetch_pointer_.row >= 16 || !Storage::horizontal_scroll_lock_) ? (line_buffer.latched_horizontal_scroll >> 3) : 0; // Limit address bits in use if this is a SMS2 mode. const bool is_tall_mode = mode_timing_.pixel_lines != 192; const size_t pattern_name_address = Storage::pattern_name_address_ | (is_tall_mode ? 0x800 : 0); const size_t pattern_name_offset = is_tall_mode ? 0x100 : 0; // Determine row info for the screen both (i) if vertical scrolling is applied; and (ii) if it isn't. // The programmer can opt out of applying vertical scrolling to the right-hand portion of the display. const int scrolled_row = (fetch_pointer_.row + Storage::latched_vertical_scroll_) % (is_tall_mode ? 256 : 224); struct RowInfo { size_t pattern_address_base; size_t sub_row[2]; }; const RowInfo scrolled_row_info = { (pattern_name_address & size_t(((scrolled_row & ~7) << 3) | 0x3800)) - pattern_name_offset, {size_t((scrolled_row & 7) << 2), 28 ^ size_t((scrolled_row & 7) << 2)} }; RowInfo row_info; if(Storage::vertical_scroll_lock_) { row_info.pattern_address_base = (pattern_name_address & size_t(((fetch_pointer_.row & ~7) << 3) | 0x3800)) - pattern_name_offset; row_info.sub_row[0] = size_t((fetch_pointer_.row & 7) << 2); row_info.sub_row[1] = 28 ^ size_t((fetch_pointer_.row & 7) << 2); } else row_info = scrolled_row_info; // ... and do the actual fetching, which follows this routine: switch(start) { default: assert(false); sprite_fetch_block(0, 0); sprite_fetch_block(6, 2); external_slots_4(12); external_slot(16); sprite_fetch_block(17, 4); sprite_fetch_block(23, 6); slot(29): sprite_selection_buffer.reset_sprite_collection(); do_external_slot(to_internal(29)); external_slot(30); sprite_y_read(31, 0); sprite_y_read(32, 2); sprite_y_read(33, 4); sprite_y_read(34, 6); sprite_y_read(35, 8); sprite_y_read(36, 10); sprite_y_read(37, 12); sprite_y_read(38, 14); background_fetch_block(39, 0, 16, scrolled_row_info); background_fetch_block(55, 4, 22, scrolled_row_info); background_fetch_block(71, 8, 28, scrolled_row_info); background_fetch_block(87, 12, 34, scrolled_row_info); background_fetch_block(103, 16, 40, scrolled_row_info); background_fetch_block(119, 20, 46, scrolled_row_info); background_fetch_block(135, 24, 52, row_info); background_fetch_block(151, 28, 58, row_info); external_slots_4(167); return; } #undef background_fetch_block #undef fetch_tile #undef fetch_tile_name #undef sprite_y_read #undef sprite_fetch_block #undef sprite_fetch } } // MARK: - Yamaha // TODO. template template void Base::fetch_yamaha_refresh(int start, int end) { (void)start; (void)end; } template template void Base::fetch_yamaha_no_sprites(int start, int end) { (void)start; (void)end; } template template void Base::fetch_yamaha_sprites(int start, int end) { (void)start; (void)end; } // MARK: - Mega Drive // TODO. #undef external_slot #undef slot #endif /* Fetch_hpp */