// CRTOpenGL.cpp // Clock Signal // // Created by Thomas Harte on 03/02/2016. // Copyright © 2016 Thomas Harte. All rights reserved. // #include "CRT.hpp" #include #include #include "OpenGL.hpp" #include "TextureTarget.hpp" #include "Shader.hpp" #include "CRTOpenGL.hpp" using namespace Outputs; struct CRT::OpenGLState { std::unique_ptr shaderProgram; GLuint arrayBuffer, vertexArray; size_t verticesPerSlice; GLint positionAttribute; GLint textureCoordinatesAttribute; GLint lateralAttribute; GLint timestampAttribute; GLint windowSizeUniform, timestampBaseUniform; GLint boundsOriginUniform, boundsSizeUniform; GLuint textureName, shadowMaskTextureName; GLuint defaultFramebuffer; std::unique_ptr compositeTexture; // receives raw composite levels std::unique_ptr filteredYTexture; // receives filtered Y in the R channel plus unfiltered I/U and Q/V in G and B std::unique_ptr filteredTexture; // receives filtered YIQ or YUV }; static GLenum formatForDepth(size_t depth) { switch(depth) { default: return GL_FALSE; case 1: return GL_RED; case 2: return GL_RG; case 3: return GL_RGB; case 4: return GL_RGBA; } } void CRT::construct_openGL() { _openGL_state = nullptr; _composite_shader = _rgb_shader = nullptr; } void CRT::destruct_openGL() { delete _openGL_state; _openGL_state = nullptr; if(_composite_shader) free(_composite_shader); if(_rgb_shader) free(_rgb_shader); } void CRT::draw_frame(unsigned int output_width, unsigned int output_height, bool only_if_dirty) { // establish essentials if(!_openGL_state) { _openGL_state = new OpenGLState; glGenTextures(1, &_openGL_state->textureName); glBindTexture(GL_TEXTURE_2D, _openGL_state->textureName); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); GLenum format = formatForDepth(_buffer_builder->buffers[0].bytes_per_pixel); glTexImage2D(GL_TEXTURE_2D, 0, (GLint)format, CRTInputBufferBuilderWidth, CRTInputBufferBuilderHeight, 0, format, GL_UNSIGNED_BYTE, _buffer_builder->buffers[0].data); glGenVertexArrays(1, &_openGL_state->vertexArray); glGenBuffers(1, &_openGL_state->arrayBuffer); _openGL_state->verticesPerSlice = 0; prepare_shader(); glBindBuffer(GL_ARRAY_BUFFER, _openGL_state->arrayBuffer); glBindVertexArray(_openGL_state->vertexArray); prepare_vertex_array(); glGetIntegerv(GL_FRAMEBUFFER_BINDING, (GLint *)&_openGL_state->defaultFramebuffer); // _openGL_state->compositeTexture = std::unique_ptr(new OpenGL::TextureTarget(2048, kCRTFrameIntermediateBufferHeight)); // _openGL_state->filteredYTexture = std::unique_ptr(new OpenGL::TextureTarget(2048, kCRTFrameIntermediateBufferHeight)); // _openGL_state->filteredTexture = std::unique_ptr(new OpenGL::TextureTarget(2048, kCRTFrameIntermediateBufferHeight)); } // lock down any further work on the current frame _output_mutex->lock(); // update uniforms push_size_uniforms(output_width, output_height); // clear the buffer glClear(GL_COLOR_BUFFER_BIT); // upload more source pixel data if any; we'll always resubmit the last line submitted last // time as it may have had extra data appended to it GLenum format = formatForDepth(_buffer_builder->buffers[0].bytes_per_pixel); if(_buffer_builder->_next_write_y_position < _buffer_builder->last_uploaded_line) { glTexSubImage2D(GL_TEXTURE_2D, 0, 0, (GLint)_buffer_builder->last_uploaded_line, CRTInputBufferBuilderWidth, (GLint)(CRTInputBufferBuilderHeight - _buffer_builder->last_uploaded_line), format, GL_UNSIGNED_BYTE, &_buffer_builder->buffers[0].data[_buffer_builder->last_uploaded_line * CRTInputBufferBuilderWidth * _buffer_builder->buffers[0].bytes_per_pixel]); _buffer_builder->last_uploaded_line = 0; } if(_buffer_builder->_next_write_y_position > _buffer_builder->last_uploaded_line) { glTexSubImage2D(GL_TEXTURE_2D, 0, 0, (GLint)_buffer_builder->last_uploaded_line, CRTInputBufferBuilderWidth, (GLint)(1 + _buffer_builder->_next_write_y_position - _buffer_builder->last_uploaded_line), format, GL_UNSIGNED_BYTE, &_buffer_builder->buffers[0].data[_buffer_builder->last_uploaded_line * CRTInputBufferBuilderWidth * _buffer_builder->buffers[0].bytes_per_pixel]); _buffer_builder->last_uploaded_line = _buffer_builder->_next_write_y_position; } // ensure array buffer is up to date size_t max_number_of_vertices = 0; for(int c = 0; c < kCRTNumberOfFrames; c++) { max_number_of_vertices = std::max(max_number_of_vertices, _run_builders[c]->number_of_vertices); } if(_openGL_state->verticesPerSlice < max_number_of_vertices) { _openGL_state->verticesPerSlice = max_number_of_vertices; glBufferData(GL_ARRAY_BUFFER, (GLsizeiptr)(max_number_of_vertices * kCRTSizeOfVertex * kCRTNumberOfFrames), NULL, GL_STREAM_DRAW); for(unsigned int c = 0; c < kCRTNumberOfFrames; c++) { uint8_t *data = &_run_builders[c]->_runs[0]; glBufferSubData(GL_ARRAY_BUFFER, (GLsizeiptr)(c * _openGL_state->verticesPerSlice * kCRTSizeOfVertex), (GLsizeiptr)(_run_builders[c]->number_of_vertices * kCRTSizeOfVertex), data); _run_builders[c]->uploaded_vertices = _run_builders[c]->number_of_vertices; } } // draw all sitting frames unsigned int run = (unsigned int)_run_write_pointer; // printf("%d: %zu v %zu\n", run, _run_builders[run]->uploaded_vertices, _run_builders[run]->number_of_vertices); GLint total_age = 0; for(int c = 0; c < kCRTNumberOfFrames; c++) { // update the total age at the start of this set of runs total_age += _run_builders[run]->duration; if(_run_builders[run]->number_of_vertices > 0) { glUniform1f(_openGL_state->timestampBaseUniform, (GLfloat)total_age); if(_run_builders[run]->uploaded_vertices != _run_builders[run]->number_of_vertices) { uint8_t *data = &_run_builders[run]->_runs[_run_builders[run]->uploaded_vertices * kCRTSizeOfVertex]; glBufferSubData(GL_ARRAY_BUFFER, (GLsizeiptr)(((run * _openGL_state->verticesPerSlice) + _run_builders[run]->uploaded_vertices) * kCRTSizeOfVertex), (GLsizeiptr)((_run_builders[run]->number_of_vertices - _run_builders[run]->uploaded_vertices) * kCRTSizeOfVertex), data); _run_builders[run]->uploaded_vertices = _run_builders[run]->number_of_vertices; } // draw this frame glDrawArrays(GL_TRIANGLES, (GLint)(run * _openGL_state->verticesPerSlice), (GLsizei)_run_builders[run]->number_of_vertices); } // advance back in time run = (run - 1 + kCRTNumberOfFrames) % kCRTNumberOfFrames; } _output_mutex->unlock(); } void CRT::set_openGL_context_will_change(bool should_delete_resources) { _openGL_state = nullptr; } void CRT::push_size_uniforms(unsigned int output_width, unsigned int output_height) { if(_openGL_state->windowSizeUniform >= 0) { glUniform2f(_openGL_state->windowSizeUniform, output_width, output_height); } GLfloat outputAspectRatioMultiplier = ((float)output_width / (float)output_height) / (4.0f / 3.0f); Rect _aspect_ratio_corrected_bounds = _visible_area; GLfloat bonusWidth = (outputAspectRatioMultiplier - 1.0f) * _visible_area.size.width; _aspect_ratio_corrected_bounds.origin.x -= bonusWidth * 0.5f * _aspect_ratio_corrected_bounds.size.width; _aspect_ratio_corrected_bounds.size.width *= outputAspectRatioMultiplier; if(_openGL_state->boundsOriginUniform >= 0) glUniform2f(_openGL_state->boundsOriginUniform, (GLfloat)_aspect_ratio_corrected_bounds.origin.x, (GLfloat)_aspect_ratio_corrected_bounds.origin.y); if(_openGL_state->boundsSizeUniform >= 0) glUniform2f(_openGL_state->boundsSizeUniform, (GLfloat)_aspect_ratio_corrected_bounds.size.width, (GLfloat)_aspect_ratio_corrected_bounds.size.height); } void CRT::set_composite_sampling_function(const char *shader) { _composite_shader = strdup(shader); } void CRT::set_rgb_sampling_function(const char *shader) { _rgb_shader = strdup(shader); } char *CRT::get_vertex_shader() { // the main job of the vertex shader is just to map from an input area of [0,1]x[0,1], with the origin in the // top left to OpenGL's [-1,1]x[-1,1] with the origin in the lower left, and to convert input data coordinates // from integral to floating point; there's also some setup for NTSC, PAL or whatever. // const char *const ntscVertexShaderGlobals = // "out vec2 srcCoordinatesVarying[4];\n" // "out float phase;\n"; // // const char *const ntscVertexShaderBody = // "phase = srcCoordinates.x * 6.283185308;\n" // "\n" // "srcCoordinatesVarying[0] = vec2(srcCoordinates.x / textureSize.x, (srcCoordinates.y + 0.5) / textureSize.y);\n" // "srcCoordinatesVarying[3] = srcCoordinatesVarying[0] + vec2(0.375 / textureSize.x, 0.0);\n" // "srcCoordinatesVarying[2] = srcCoordinatesVarying[0] + vec2(0.125 / textureSize.x, 0.0);\n" // "srcCoordinatesVarying[1] = srcCoordinatesVarying[0] - vec2(0.125 / textureSize.x, 0.0);\n" // "srcCoordinatesVarying[0] = srcCoordinatesVarying[0] - vec2(0.325 / textureSize.x, 0.0);\n"; return strdup( "#version 150\n" "in vec2 position;" "in vec2 srcCoordinates;" "in float lateral;" "in float timestamp;" "uniform vec2 boundsOrigin;" "uniform vec2 boundsSize;" "out float lateralVarying;" "out vec2 shadowMaskCoordinates;" "out float alpha;" "uniform vec2 textureSize;" "uniform float timestampBase;" "uniform float ticksPerFrame;" "uniform vec2 positionConversion;" "uniform vec2 scanNormal;" "const float shadowMaskMultiple = 600;" "out vec2 srcCoordinatesVarying;" "void main(void)" "{" "lateralVarying = lateral + 1.0707963267949;" "shadowMaskCoordinates = position * vec2(shadowMaskMultiple, shadowMaskMultiple * 0.85057471264368);" "srcCoordinatesVarying = vec2(srcCoordinates.x / textureSize.x, (srcCoordinates.y + 0.5) / textureSize.y);" "float age = (timestampBase - timestamp) / ticksPerFrame;" "alpha = min(10.0 * exp(-age * 2.0), 1.0);" "vec2 floatingPosition = (position / positionConversion) + lateral*scanNormal;" "vec2 mappedPosition = (floatingPosition - boundsOrigin) / boundsSize;" "gl_Position = vec4(mappedPosition.x * 2.0 - 1.0, 1.0 - mappedPosition.y * 2.0, 0.0, 1.0);" "}"); } char *CRT::get_fragment_shader() { // assumes y = [0, 1], i and q = [-0.5, 0.5]; therefore i components are multiplied by 1.1914 versus standard matrices, q by 1.0452 // const char *const yiqToRGB = "const mat3 yiqToRGB = mat3(1.0, 1.0, 1.0, 1.1389784, -0.3240608, -1.3176884, 0.6490692, -0.6762444, 1.7799756);"; // assumes y = [0,1], u and v = [-0.5, 0.5]; therefore u components are multiplied by 1.14678899082569, v by 0.8130081300813 // const char *const yuvToRGB = "const mat3 yiqToRGB = mat3(1.0, 1.0, 1.0, 0.0, -0.75213899082569, 2.33040137614679, 0.92669105691057, -0.4720325203252, 0.0);"; // const char *const ntscFragmentShaderGlobals = // "in vec2 srcCoordinatesVarying[4];\n" // "in float phase;\n" // "\n" // "// for conversion from i and q are in the range [-0.5, 0.5] (so i needs to be multiplied by 1.1914 and q by 1.0452)\n" // "const mat3 yiqToRGB = mat3(1.0, 1.0, 1.0, 1.1389784, -0.3240608, -1.3176884, 0.6490692, -0.6762444, 1.7799756);\n"; // const char *const ntscFragmentShaderBody = // "vec4 angles = vec4(phase) + vec4(-2.35619449019234, -0.78539816339745, 0.78539816339745, 2.35619449019234);\n" // "vec4 samples = vec4(" // " sample(srcCoordinatesVarying[0], angles.x)," // " sample(srcCoordinatesVarying[1], angles.y)," // " sample(srcCoordinatesVarying[2], angles.z)," // " sample(srcCoordinatesVarying[3], angles.w)" // ");\n" // "\n" // "float y = dot(vec4(0.25), samples);\n" // "samples -= vec4(y);\n" // "\n" // "float i = dot(cos(angles), samples);\n" // "float q = dot(sin(angles), samples);\n" // "\n" // "fragColour = 5.0 * texture(shadowMaskTexID, shadowMaskCoordinates) * vec4(yiqToRGB * vec3(y, i, q), 1.0);//sin(lateralVarying));\n"; // dot(vec3(1.0/6.0, 2.0/3.0, 1.0/6.0), vec3(sample(srcCoordinatesVarying[0]), sample(srcCoordinatesVarying[0]), sample(srcCoordinatesVarying[0])));//sin(lateralVarying));\n"; return get_compound_shader( "#version 150\n" "in float lateralVarying;" "in float alpha;" "in vec2 shadowMaskCoordinates;" "in vec2 srcCoordinatesVarying;" "out vec4 fragColour;" "uniform sampler2D texID;" "uniform sampler2D shadowMaskTexID;" "\n%s\n" "void main(void)" "{" "fragColour = vec4(rgb_sample(srcCoordinatesVarying).rgb, alpha * sin(lateralVarying));" // "}" , _rgb_shader); } char *CRT::get_compound_shader(const char *base, const char *insert) { size_t totalLength = strlen(base) + strlen(insert) + 1; char *text = new char[totalLength]; snprintf(text, totalLength, base, insert); return text; } void CRT::prepare_shader() { char *vertex_shader = get_vertex_shader(); char *fragment_shader = get_fragment_shader(); _openGL_state->shaderProgram = std::unique_ptr(new OpenGL::Shader(vertex_shader, fragment_shader)); _openGL_state->shaderProgram->bind(); _openGL_state->positionAttribute = _openGL_state->shaderProgram->get_attrib_location("position"); _openGL_state->textureCoordinatesAttribute = _openGL_state->shaderProgram->get_attrib_location("srcCoordinates"); _openGL_state->lateralAttribute = _openGL_state->shaderProgram->get_attrib_location("lateral"); _openGL_state->timestampAttribute = _openGL_state->shaderProgram->get_attrib_location("timestamp"); _openGL_state->windowSizeUniform = _openGL_state->shaderProgram->get_uniform_location("windowSize"); _openGL_state->boundsSizeUniform = _openGL_state->shaderProgram->get_uniform_location("boundsSize"); _openGL_state->boundsOriginUniform = _openGL_state->shaderProgram->get_uniform_location("boundsOrigin"); _openGL_state->timestampBaseUniform = _openGL_state->shaderProgram->get_uniform_location("timestampBase"); GLint texIDUniform = _openGL_state->shaderProgram->get_uniform_location("texID"); GLint shadowMaskTexIDUniform = _openGL_state->shaderProgram->get_uniform_location("shadowMaskTexID"); GLint textureSizeUniform = _openGL_state->shaderProgram->get_uniform_location("textureSize"); GLint ticksPerFrameUniform = _openGL_state->shaderProgram->get_uniform_location("ticksPerFrame"); GLint scanNormalUniform = _openGL_state->shaderProgram->get_uniform_location("scanNormal"); GLint positionConversionUniform = _openGL_state->shaderProgram->get_uniform_location("positionConversion"); glUniform1i(texIDUniform, 0); glUniform1i(shadowMaskTexIDUniform, 1); glUniform2f(textureSizeUniform, CRTInputBufferBuilderWidth, CRTInputBufferBuilderHeight); glUniform1f(ticksPerFrameUniform, (GLfloat)(_cycles_per_line * _height_of_display)); glUniform2f(positionConversionUniform, _horizontal_flywheel->get_scan_period(), _vertical_flywheel->get_scan_period() / (unsigned int)_vertical_flywheel_output_divider); float scan_angle = atan2f(1.0f / (float)_height_of_display, 1.0f); float scan_normal[] = { sinf(scan_angle), cosf(scan_angle)}; scan_normal[0] /= (float)_height_of_display; scan_normal[1] /= (float)_height_of_display; glUniform2f(scanNormalUniform, scan_normal[0], scan_normal[1]); } void CRT::prepare_vertex_array() { glEnableVertexAttribArray((GLuint)_openGL_state->positionAttribute); glEnableVertexAttribArray((GLuint)_openGL_state->textureCoordinatesAttribute); glEnableVertexAttribArray((GLuint)_openGL_state->lateralAttribute); glEnableVertexAttribArray((GLuint)_openGL_state->timestampAttribute); const GLsizei vertexStride = kCRTSizeOfVertex; glVertexAttribPointer((GLuint)_openGL_state->positionAttribute, 2, GL_UNSIGNED_SHORT, GL_FALSE, vertexStride, (void *)kCRTVertexOffsetOfPosition); glVertexAttribPointer((GLuint)_openGL_state->textureCoordinatesAttribute, 2, GL_UNSIGNED_SHORT, GL_FALSE, vertexStride, (void *)kCRTVertexOffsetOfTexCoord); glVertexAttribPointer((GLuint)_openGL_state->timestampAttribute, 4, GL_UNSIGNED_INT, GL_FALSE, vertexStride, (void *)kCRTVertexOffsetOfTimestamp); glVertexAttribPointer((GLuint)_openGL_state->lateralAttribute, 1, GL_UNSIGNED_BYTE, GL_FALSE, vertexStride, (void *)kCRTVertexOffsetOfLateral); } void CRT::set_output_device(OutputDevice output_device) { _output_device = output_device; }