// // SegmentParser.cpp // Clock Signal // // Created by Thomas Harte on 04/05/2018. // Copyright 2018 Thomas Harte. All rights reserved. // #include "SegmentParser.hpp" #include "Encoder.hpp" #include namespace { const uint8_t six_and_two_unmapping[] = { /* 0x96 */ 0x00, 0x01, /* 0x98 */ 0xff, 0xff, 0x02, 0x03, 0xff, 0x04, 0x05, 0x06, /* 0xa0 */ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x07, 0x08, /* 0xa8 */ 0xff, 0xff, 0xff, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, /* 0xb0 */ 0xff, 0xff, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13, /* 0xb8 */ 0xff, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, /* 0xc0 */ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 0xc8 */ 0xff, 0xff, 0xff, 0x1b, 0xff, 0x1c, 0x1d, 0x1e, /* 0xd0 */ 0xff, 0xff, 0xff, 0x1f, 0xff, 0xff, 0x20, 0x21, /* 0xd8 */ 0xff, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28, /* 0xe0 */ 0xff, 0xff, 0xff, 0xff, 0xff, 0x29, 0x2a, 0x2b, /* 0xe8 */ 0xff, 0x2c, 0x2d, 0x2e, 0x2f, 0x30, 0x31, 0x32, /* 0xf0 */ 0xff, 0xff, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, /* 0xf8 */ 0xff, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f, }; uint8_t unmap_six_and_two(uint8_t source) { if(source < 0x96) return 0xff; return six_and_two_unmapping[source - 0x96]; } } using namespace Storage::Encodings::AppleGCR; std::map Storage::Encodings::AppleGCR::sectors_from_segment(const Disk::PCMSegment &segment) { std::map result; uint_fast8_t shift_register = 0; const std::size_t scanning_sentinel = std::numeric_limits::max(); std::unique_ptr new_sector; std::size_t sector_location = 0; std::size_t pointer = scanning_sentinel; std::array header{{0, 0, 0, 0, 0, 0, 0, 0}}; std::array scanner{{0, 0, 0}}; // Scan the track while either all bits haven't been seen yet, or a potential // sector is still being parsed. size_t bit = 0; int header_delay = 0; while(bit < segment.data.size() || pointer != scanning_sentinel || header_delay) { shift_register = static_cast((shift_register << 1) | (segment.data[bit % segment.data.size()] ? 1 : 0)); ++bit; // Apple GCR parsing: bytes always have the top bit set. if(!(shift_register&0x80)) continue; if(header_delay) --header_delay; // Grab the byte. const uint_fast8_t value = shift_register; shift_register = 0; scanner[0] = scanner[1]; scanner[1] = scanner[2]; scanner[2] = value; if(pointer == scanning_sentinel) { if( scanner[0] == header_prologue[0] && scanner[1] == header_prologue[1] && ( scanner[2] == header_prologue[2] || scanner[2] == data_prologue[2] )) { pointer = 0; // If this is the start of a data section, and at least // one header has been witnessed, start a sector. if(scanner[2] == data_prologue[2]) { new_sector.reset(new Sector); new_sector->data.reserve(710); } else { sector_location = static_cast(bit % segment.data.size()); header_delay = 200; // Allow up to 200 bytes to find the body, if the // track split comes in between. } } } else { if(new_sector) { // Check whether the value just read is a legal GCR byte, in six-and-two // encoding (which is a strict superset of five-and-three). if(unmap_six_and_two(value) == 0xff) { // The second byte of the standard epilogue is illegal, so this still may // be a valid sector. If the final byte was the first byte of an epilogue, // chop it off and see whether the sector is otherwise intelligible. if(new_sector->data.empty() || new_sector->data.back() != epilogue[0]) { // No sector found; reset scanning procedure. new_sector.reset(); pointer = scanning_sentinel; continue; } // Chop off the last byte. new_sector->data.resize(new_sector->data.size() - 1); // Move the sector elsewhere for processing; there's definitely no way to proceed with // the prospective sector if it doesn't parse. std::unique_ptr sector = std::move(new_sector); new_sector.reset(); pointer = scanning_sentinel; // Check for valid decoding options. switch(sector->data.size()) { default: // This is not a decodeable sector. break; // TODO: check for five-and-three / 13-sector form sectors. case 343: { // Potentially this is an Apple II six-and-two sector. // Check for apparent four and four encoding. uint_fast8_t header_mask = 0xff; for(auto c : header) header_mask &= c; header_mask &= 0xaa; if(header_mask != 0xaa) continue; sector->address.volume = ((header[0] << 1) | 1) & header[1]; sector->address.track = ((header[2] << 1) | 1) & header[3]; sector->address.sector = ((header[4] << 1) | 1) & header[5]; // Check the header checksum. uint_fast8_t checksum = ((header[6] << 1) | 1) & header[7]; if(checksum != (sector->address.volume^sector->address.track^sector->address.sector)) continue; // Unmap the sector contents as 6 and 2 data. bool out_of_bounds = false; for(auto &c : sector->data) { c = unmap_six_and_two(c); if(c == 0xff) { out_of_bounds = true; break; } } if(out_of_bounds) continue; // Undo the XOR step on sector contents and check that checksum. for(std::size_t c = 1; c < sector->data.size(); ++c) { sector->data[c] ^= sector->data[c-1]; } if(sector->data.back()) continue; // Having checked the checksum, remove it. sector->data.resize(sector->data.size() - 1); // Undo the 6 and 2 mapping. const uint8_t bit_reverse[] = {0, 2, 1, 3}; #define unmap(byte, nibble, shift) \ sector->data[86 + byte] = static_cast(\ (sector->data[86 + byte] << 2) | bit_reverse[(sector->data[nibble] >> shift)&3]); for(std::size_t c = 0; c < 84; ++c) { unmap(c, c, 0); unmap(c+86, c, 2); unmap(c+172, c, 4); } unmap(84, 84, 0); unmap(170, 84, 2); unmap(85, 85, 0); unmap(171, 85, 2); #undef unmap // Throw away the collection of two-bit chunks from the start of the sector. sector->data.erase(sector->data.begin(), sector->data.end() - 256); // Add this sector to the map. sector->encoding = Sector::Encoding::SixAndTwo; result.insert(std::make_pair(sector_location, std::move(*sector))); } break; case 704: { // Potentially this is a Macintosh sector. // Attempt a six-and-two unmapping of the header. std::array decoded_header; bool out_of_bounds = false; for(size_t c = 0; c < decoded_header.size(); ++c) { decoded_header[c] = unmap_six_and_two(header[c]); if(decoded_header[c] == 0xff) { out_of_bounds = true; break; } } if(out_of_bounds) { continue; } // Test the checksum. if(decoded_header[4] != (decoded_header[0] ^ decoded_header[1] ^ decoded_header[2] ^ decoded_header[3])) sector->has_header_checksum_error = true; // Decode the header. sector->address.track = uint8_t(decoded_header[0] | ((decoded_header[2]&0x1f) << 6)); sector->address.sector = decoded_header[1]; sector->address.format = decoded_header[3]; sector->address.is_side_two = decoded_header[2] & 0x20; // Reverse the GCR encoding of the sector contents to get back to 6-bit data. for(auto &c: sector->data) { c = unmap_six_and_two(c); if(c == 0xff) { out_of_bounds = true; break; } } if(out_of_bounds) { continue; } // The first byte in the sector is a repeat of the sector number; test it // for correctness. if(sector->data[0] != sector->address.sector) { continue; } // Cf. the corresponding section of Encoder.cpp for logic below. int checksum[3] = {0, 0, 0}; for(size_t c = 0; c < 175; ++c) { // Calculate the rolling checcksum in order to decode the bytes. checksum[0] = (checksum[0] << 1) | (checksum[0] >> 7); // All offsets are +1 below, to skip the initial sector number duplicate. const uint8_t top_bits = sector->data[1 + c*4]; // Decode first byte. sector->data[0 + c * 3] = uint8_t((sector->data[2 + c*4] + ((top_bits & 0x30) << 2)) ^ checksum[0]); checksum[2] += sector->data[0 + c * 3] + (checksum[0] >> 8); // Decode second byte; sector->data[1 + c * 3] = uint8_t((sector->data[3 + c*4] + ((top_bits & 0x0c) << 4)) ^ checksum[2]); checksum[1] += sector->data[1 + c * 3] + (checksum[2] >> 8); // Decode third byte, if there is one. if(c != 174) { sector->data[2 + c * 3] = uint8_t((sector->data[4 + c*4] + ((top_bits & 0x03) << 6)) ^ checksum[1]); checksum[0] += sector->data[2 + c * 3] + (checksum[1] >> 8); } // Reset carries. checksum[0] &= 0xff; checksum[1] &= 0xff; checksum[2] &= 0xff; } // Test the checksum. if( checksum[0] != uint8_t(sector->data[703] + ((sector->data[700] & 0x03) << 6)) || checksum[1] != uint8_t(sector->data[702] + ((sector->data[700] & 0x0c) << 4)) || checksum[2] != uint8_t(sector->data[701] + ((sector->data[700] & 0x30) << 2)) ) sector->has_data_checksum_error = true; // Chop to size, and that's that. sector->data.resize(524); // Add this sector to the map. sector->encoding = Sector::Encoding::Macintosh; result.insert(std::make_pair(sector_location, std::move(*sector))); } break; } } else { new_sector->data.push_back(value); } } else { // Just capture the header in place; it'll be decoded // once a whole sector has been read. header[pointer] = value; ++pointer; if(pointer == 8) { pointer = scanning_sentinel; } } } } return result; }