// // ZX8081.cpp // Clock Signal // // Created by Thomas Harte on 07/06/2017. // Copyright 2017 Thomas Harte. All rights reserved. // #include "ZX8081.hpp" using namespace Storage::Tape::ZX8081; Parser::Parser() : pulse_was_high_(false), pulse_time_(0) {} void Parser::process_pulse(const Storage::Tape::Pulse &pulse) { // If this is anything other than a transition from low to high, just add it to the // count of time. const bool pulse_is_high = pulse.type == Storage::Tape::Pulse::High; const bool pulse_did_change = pulse_is_high != pulse_was_high_; pulse_was_high_ = pulse_is_high; if(!pulse_did_change || !pulse_is_high) { pulse_time_ += pulse.length; return; } // Otherwise post a new pulse. post_pulse(); pulse_time_ = pulse.length; } void Parser::post_pulse() { constexpr float expected_pulse_length = 300.0f / 1000000.0f; constexpr float expected_gap_length = 1300.0f / 1000000.0f; const auto pulse_time = pulse_time_.get(); if(pulse_time > expected_gap_length * 1.25f) { push_wave(WaveType::LongGap); } else if(pulse_time > expected_pulse_length * 1.25f) { push_wave(WaveType::Gap); } else if(pulse_time >= expected_pulse_length * 0.75f && pulse_time <= expected_pulse_length * 1.25f) { push_wave(WaveType::Pulse); } else { push_wave(WaveType::Unrecognised); } } void Parser::mark_end() { // Post a long gap to cap any bit that's in the process of recognition. push_wave(WaveType::LongGap); } void Parser::inspect_waves(const std::vector &waves) { // A long gap is a file gap. if(waves[0] == WaveType::LongGap) { push_symbol(SymbolType::FileGap, 1); return; } if(waves[0] == WaveType::Unrecognised) { push_symbol(SymbolType::Unrecognised, 1); return; } if(waves.size() >= 4) { std::size_t wave_offset = 0; // If the very first thing is a gap, swallow it. if(waves[0] == WaveType::Gap) { wave_offset = 1; } // Count the number of pulses at the start of this vector std::size_t number_of_pulses = 0; while(number_of_pulses + wave_offset < waves.size() && waves[number_of_pulses + wave_offset] == WaveType::Pulse) { number_of_pulses++; } // If those pulses were followed by something not recognised as a pulse, check for a bit if(number_of_pulses + wave_offset < waves.size()) { // A 1 is 9 waves, a 0 is 4. Counting upward zero transitions, the first in either group will // act simply to terminate the gap beforehand and won't be logged as a pulse. So counts to // check are 8 and 3. std::size_t gaps_to_swallow = wave_offset + ((waves[number_of_pulses + wave_offset] == WaveType::Gap) ? 1 : 0); switch(number_of_pulses) { case 8: push_symbol(SymbolType::One, int(number_of_pulses + gaps_to_swallow)); break; case 3: push_symbol(SymbolType::Zero, int(number_of_pulses + gaps_to_swallow)); break; default: push_symbol(SymbolType::Unrecognised, 1); break; } } } } int Parser::get_next_byte(const std::shared_ptr &tape) { int c = 8; int result = 0; while(c) { if(is_at_end(tape)) return -1; SymbolType symbol = get_next_symbol(tape); if(symbol != SymbolType::One && symbol != SymbolType::Zero) { if(c == 8) continue; return_symbol(symbol); return -1; } result = (result << 1) | (symbol == SymbolType::One ? 1 : 0); c--; } return result; } std::shared_ptr> Parser::get_next_file_data(const std::shared_ptr &tape) { if(is_at_end(tape)) return nullptr; SymbolType symbol = get_next_symbol(tape); if(symbol != SymbolType::FileGap) { return nullptr; } while((symbol == SymbolType::FileGap || symbol == SymbolType::Unrecognised) && !is_at_end(tape)) { symbol = get_next_symbol(tape); } if(is_at_end(tape)) return nullptr; return_symbol(symbol); auto result = std::make_shared>(); int byte; while(!is_at_end(tape)) { byte = get_next_byte(tape); if(byte == -1) return result; result->push_back(uint8_t(byte)); } return result; } std::shared_ptr Parser::get_next_file(const std::shared_ptr &tape) { std::shared_ptr> file_data = get_next_file_data(tape); if(!file_data) { return nullptr; } return Storage::Data::ZX8081::FileFromData(*file_data); }