// // CRT.cpp // Clock Signal // // Created by Thomas Harte on 19/07/2015. // Copyright © 2015 Thomas Harte. All rights reserved. // #include "CRT.hpp" #include #include using namespace Outputs; static const uint32_t kCRTFixedPointRange = 0xefffffff; static const uint32_t kCRTFixedPointOffset = 0x08000000; #define kRetraceXMask 0x01 #define kRetraceYMask 0x02 void CRT::set_new_timing(unsigned int cycles_per_line, unsigned int height_of_display) { const unsigned int syncCapacityLineChargeThreshold = 3; const unsigned int millisecondsHorizontalRetraceTime = 7; // source: Dictionary of Video and Television Technology, p. 234 const unsigned int scanlinesVerticalRetraceTime = 10; // source: ibid // To quote: // // "retrace interval; The interval of time for the return of the blanked scanning beam of // a TV picture tube or camera tube to the starting point of a line or field. It is about 7 µs // for horizontal retrace and 500 to 750 µs for vertical retrace in NTSC and PAL TV." _time_multiplier = (1000 + cycles_per_line - 1) / cycles_per_line; height_of_display += (height_of_display / 20); // this is the overrun area we'll use to // store fundamental display configuration properties _height_of_display = height_of_display + 5; _cycles_per_line = cycles_per_line * _time_multiplier; // generate timing values implied by the given arbuments _hsync_error_window = _cycles_per_line >> 5; _sync_capacitor_charge_threshold = ((syncCapacityLineChargeThreshold * _cycles_per_line) * 50) >> 7; _horizontal_retrace_time = (millisecondsHorizontalRetraceTime * _cycles_per_line) >> 6; const unsigned int vertical_retrace_time = scanlinesVerticalRetraceTime * _cycles_per_line; const float halfLineWidth = (float)_height_of_display * 2.0f; for(int c = 0; c < 4; c++) { _scanSpeed[c].x = (c&kRetraceXMask) ? -(kCRTFixedPointRange / _horizontal_retrace_time) : (kCRTFixedPointRange / _cycles_per_line); _scanSpeed[c].y = (c&kRetraceYMask) ? -(kCRTFixedPointRange / vertical_retrace_time) : (kCRTFixedPointRange / (_height_of_display * _cycles_per_line)); // width should be 1.0 / _height_of_display, rotated to match the direction float angle = atan2f(_scanSpeed[c].y, _scanSpeed[c].x); _beamWidth[c].x = (uint32_t)((sinf(angle) / halfLineWidth) * kCRTFixedPointRange); _beamWidth[c].y = (uint32_t)((cosf(angle) / halfLineWidth) * kCRTFixedPointRange); } } CRT::CRT(unsigned int cycles_per_line, unsigned int height_of_display, unsigned int number_of_buffers, ...) { set_new_timing(cycles_per_line, height_of_display); // generate buffers for signal storage as requested — format is // number of buffers, size of buffer 1, size of buffer 2... const uint16_t bufferWidth = 2048; const uint16_t bufferHeight = 2048; for(int frame = 0; frame < sizeof(_frame_builders) / sizeof(*_frame_builders); frame++) { va_list va; va_start(va, number_of_buffers); _frame_builders[frame] = new CRTFrameBuilder(bufferWidth, bufferHeight, number_of_buffers, va); va_end(va); } _frames_with_delegate = 0; _frame_read_pointer = 0; _current_frame_builder = _frame_builders[0]; // reset raster position _rasterPosition.x = _rasterPosition.y = 0; // reset flywheel sync _expected_next_hsync = _cycles_per_line; _horizontal_counter = 0; // reset the vertical charge capacitor _sync_capacitor_charge_level = 0; // start off not in horizontal sync, not receiving a sync signal _is_receiving_sync = false; _is_in_hsync = false; _is_in_vsync = false; } CRT::~CRT() { for(int frame = 0; frame < sizeof(_frame_builders) / sizeof(*_frame_builders); frame++) { delete _frame_builders[frame]; } } #pragma mark - Sync loop CRT::SyncEvent CRT::get_next_vertical_sync_event(bool vsync_is_requested, unsigned int cycles_to_run_for, unsigned int *cycles_advanced) { SyncEvent proposedEvent = SyncEvent::None; unsigned int proposedSyncTime = cycles_to_run_for; // will an acceptable vertical sync be triggered? if (vsync_is_requested && !_is_in_vsync) { if (_sync_capacitor_charge_level >= _sync_capacitor_charge_threshold && _rasterPosition.y >= 3*(kCRTFixedPointRange >> 2)) { proposedSyncTime = 0; proposedEvent = SyncEvent::StartVSync; _did_detect_vsync = true; } } // have we overrun the maximum permitted number of horizontal syncs for this frame? if (!_is_in_vsync) { unsigned int time_until_end_of_frame = (kCRTFixedPointRange - _rasterPosition.y) / _scanSpeed[0].y; if(time_until_end_of_frame < proposedSyncTime) { proposedSyncTime = time_until_end_of_frame; proposedEvent = SyncEvent::StartVSync; } } else { unsigned int time_until_start_of_frame = _rasterPosition.y / (uint32_t)(-_scanSpeed[kRetraceYMask].y); if(time_until_start_of_frame < proposedSyncTime) { proposedSyncTime = time_until_start_of_frame; proposedEvent = SyncEvent::EndVSync; } } *cycles_advanced = proposedSyncTime; return proposedEvent; } CRT::SyncEvent CRT::get_next_horizontal_sync_event(bool hsync_is_requested, unsigned int cycles_to_run_for, unsigned int *cycles_advanced) { // do we recognise this hsync, thereby adjusting future time expectations? if(hsync_is_requested) { if (_horizontal_counter < _hsync_error_window || _horizontal_counter >= _expected_next_hsync - _hsync_error_window) { _did_detect_hsync = true; unsigned int time_now = (_horizontal_counter < _hsync_error_window) ? _expected_next_hsync + _horizontal_counter : _horizontal_counter; _expected_next_hsync = (_expected_next_hsync + _expected_next_hsync + _expected_next_hsync + time_now) >> 2; } } SyncEvent proposedEvent = SyncEvent::None; unsigned int proposedSyncTime = cycles_to_run_for; // will we end an ongoing hsync? if (_horizontal_counter < _horizontal_retrace_time && _horizontal_counter+proposedSyncTime >= _horizontal_retrace_time) { proposedSyncTime = _horizontal_retrace_time - _horizontal_counter; proposedEvent = SyncEvent::EndHSync; } // will we start an hsync? if (_horizontal_counter + proposedSyncTime >= _expected_next_hsync) { proposedSyncTime = _expected_next_hsync - _horizontal_counter; proposedEvent = SyncEvent::StartHSync; } *cycles_advanced = proposedSyncTime; return proposedEvent; } void CRT::advance_cycles(unsigned int number_of_cycles, bool hsync_requested, bool vsync_requested, const bool vsync_charging, const Type type, const char *data_type) { number_of_cycles *= _time_multiplier; bool is_output_run = ((type == Type::Level) || (type == Type::Data)); uint16_t tex_x = 0; uint16_t tex_y = 0; if(is_output_run && _current_frame_builder) { tex_x = _current_frame_builder->_write_x_position; tex_y = _current_frame_builder->_write_y_position; } while(number_of_cycles) { unsigned int time_until_vertical_sync_event, time_until_horizontal_sync_event; SyncEvent next_vertical_sync_event = this->get_next_vertical_sync_event(vsync_requested, number_of_cycles, &time_until_vertical_sync_event); SyncEvent next_horizontal_sync_event = this->get_next_horizontal_sync_event(hsync_requested, time_until_vertical_sync_event, &time_until_horizontal_sync_event); // get the next sync event and its timing; hsync request is instantaneous (being edge triggered) so // set it to false for the next run through this loop (if any) unsigned int next_run_length = std::min(time_until_vertical_sync_event, time_until_horizontal_sync_event); hsync_requested = false; vsync_requested = false; uint8_t *next_run = (is_output_run && _current_frame_builder && next_run_length) ? _current_frame_builder->get_next_run() : nullptr; int lengthMask = (_is_in_hsync ? kRetraceXMask : 0) | (_is_in_vsync ? kRetraceYMask : 0); #define position_x(v) (*(uint16_t *)&next_run[kCRTSizeOfVertex*v + kCRTVertexOffsetOfPosition + 0]) #define position_y(v) (*(uint16_t *)&next_run[kCRTSizeOfVertex*v + kCRTVertexOffsetOfPosition + 2]) #define tex_x(v) (*(uint16_t *)&next_run[kCRTSizeOfVertex*v + kCRTVertexOffsetOfTexCoord + 0]) #define tex_y(v) (*(uint16_t *)&next_run[kCRTSizeOfVertex*v + kCRTVertexOffsetOfTexCoord + 2]) #define lateral(v) next_run[kCRTSizeOfVertex*v + kCRTVertexOffsetOfLateral] #define InternalToUInt16(v) ((v) + 32768) >> 16 if(next_run) { // set the type, initial raster position and type of this run position_x(0) = position_x(4) = InternalToUInt16(kCRTFixedPointOffset + _rasterPosition.x + _beamWidth[lengthMask].x); position_y(0) = position_y(4) = InternalToUInt16(kCRTFixedPointOffset + _rasterPosition.y + _beamWidth[lengthMask].y); position_x(1) = InternalToUInt16(kCRTFixedPointOffset + _rasterPosition.x - _beamWidth[lengthMask].x); position_y(1) = InternalToUInt16(kCRTFixedPointOffset + _rasterPosition.y - _beamWidth[lengthMask].y); tex_x(0) = tex_x(1) = tex_x(4) = tex_x; // these things are constants across the line so just throw them out now tex_y(0) = tex_y(4) = tex_y(1) = tex_y(2) = tex_y(3) = tex_y(5) = tex_y; lateral(0) = lateral(4) = lateral(5) = 0; lateral(1) = lateral(2) = lateral(3) = 1; } // advance the raster position as dictated by current sync status int64_t end_position[2]; end_position[0] = (int64_t)_rasterPosition.x + (int64_t)next_run_length * (int32_t)_scanSpeed[lengthMask].x; end_position[1] = (int64_t)_rasterPosition.y + (int64_t)next_run_length * (int32_t)_scanSpeed[lengthMask].y; if (_is_in_hsync) _rasterPosition.x = (uint32_t)std::max((int64_t)0, end_position[0]); else _rasterPosition.x = (uint32_t)std::min((int64_t)kCRTFixedPointRange, end_position[0]); if (_is_in_vsync) _rasterPosition.y = (uint32_t)std::max((int64_t)0, end_position[1]); else _rasterPosition.y = (uint32_t)std::min((int64_t)kCRTFixedPointRange, end_position[1]); if(next_run) { // store the final raster position position_x(2) = position_x(3) = InternalToUInt16(kCRTFixedPointOffset + _rasterPosition.x - _beamWidth[lengthMask].x); position_y(2) = position_y(3) = InternalToUInt16(kCRTFixedPointOffset + _rasterPosition.y - _beamWidth[lengthMask].y); position_x(5) = InternalToUInt16(kCRTFixedPointOffset + _rasterPosition.x + _beamWidth[lengthMask].x); position_y(5) = InternalToUInt16(kCRTFixedPointOffset + _rasterPosition.y + _beamWidth[lengthMask].y); // if this is a data run then advance the buffer pointer if(type == Type::Data) tex_x += next_run_length / _time_multiplier; // if this is a data or level run then store the end point tex_x(2) = tex_x(3) = tex_x(5) = tex_x; } // decrement the number of cycles left to run for and increment the // horizontal counter appropriately number_of_cycles -= next_run_length; _horizontal_counter += next_run_length; // either charge or deplete the vertical retrace capacitor (making sure it stops at 0) if (vsync_charging && !_is_in_vsync) _sync_capacitor_charge_level += next_run_length; else _sync_capacitor_charge_level = std::max(_sync_capacitor_charge_level - (int)next_run_length, 0); // react to the incoming event... if(next_run_length == time_until_horizontal_sync_event) { switch(next_horizontal_sync_event) { // start of hsync: zero the scanline counter, note that we're now in // horizontal sync, increment the lines-in-this-frame counter case SyncEvent::StartHSync: _horizontal_counter = 0; _is_in_hsync = true; break; // end of horizontal sync: update the flywheel's velocity, note that we're no longer // in horizontal sync case SyncEvent::EndHSync: if (!_did_detect_hsync) { _expected_next_hsync = (_expected_next_hsync + (_hsync_error_window >> 1) + _cycles_per_line) >> 1; } _did_detect_hsync = false; _is_in_hsync = false; break; default: break; } } if(next_run_length == time_until_vertical_sync_event) { switch(next_vertical_sync_event) { // start of vertical sync: reset the lines-in-this-frame counter, // load the retrace counter with the amount of time it'll take to retrace case SyncEvent::StartVSync: _is_in_vsync = true; _sync_capacitor_charge_level = 0; break; // end of vertical sync: tell the delegate that we finished vertical sync, // releasing all runs back into the common pool case SyncEvent::EndVSync: if(_delegate && _current_frame_builder) { _current_frame_builder->complete(); _frames_with_delegate++; _delegate->crt_did_end_frame(this, &_current_frame_builder->frame, _did_detect_vsync); } if(_frames_with_delegate < kCRTNumberOfFrames) { _frame_read_pointer = (_frame_read_pointer + 1)%kCRTNumberOfFrames; _current_frame_builder = _frame_builders[_frame_read_pointer]; _current_frame_builder->reset(); } else _current_frame_builder = nullptr; _is_in_vsync = false; _did_detect_vsync = false; break; default: break; } } } } void CRT::return_frame() { _frames_with_delegate--; } #pragma mark - delegate void CRT::set_delegate(CRTDelegate *delegate) { _delegate = delegate; } #pragma mark - stream feeding methods /* These all merely channel into advance_cycles, supplying appropriate arguments */ void CRT::output_sync(unsigned int number_of_cycles) { bool _hsync_requested = !_is_receiving_sync; // ensure this really is edge triggered; someone calling output_sync twice in succession shouldn't trigger it twice _is_receiving_sync = true; advance_cycles(number_of_cycles, _hsync_requested, false, true, Type::Sync, nullptr); } void CRT::output_blank(unsigned int number_of_cycles) { bool _vsync_requested = _is_receiving_sync; _is_receiving_sync = false; advance_cycles(number_of_cycles, false, _vsync_requested, false, Type::Blank, nullptr); } void CRT::output_level(unsigned int number_of_cycles, const char *type) { bool _vsync_requested = _is_receiving_sync; _is_receiving_sync = false; advance_cycles(number_of_cycles, false, _vsync_requested, false, Type::Level, type); } void CRT::output_data(unsigned int number_of_cycles, const char *type) { bool _vsync_requested = _is_receiving_sync; _is_receiving_sync = false; advance_cycles(number_of_cycles, false, _vsync_requested, false, Type::Data, type); } #pragma mark - Buffer supply void CRT::allocate_write_area(int required_length) { if(_current_frame_builder) _current_frame_builder->allocate_write_area(required_length); } uint8_t *CRT::get_write_target_for_buffer(int buffer) { if (!_current_frame_builder) return nullptr; return _current_frame_builder->get_write_target_for_buffer(buffer); } #pragma mark - CRTFrame CRTFrameBuilder::CRTFrameBuilder(uint16_t width, uint16_t height, unsigned int number_of_buffers, va_list buffer_sizes) { frame.size.width = width; frame.size.height = height; frame.number_of_buffers = number_of_buffers; frame.buffers = new CRTBuffer[number_of_buffers]; for(int buffer = 0; buffer < number_of_buffers; buffer++) { frame.buffers[buffer].depth = va_arg(buffer_sizes, unsigned int); frame.buffers[buffer].data = new uint8_t[width * height * frame.buffers[buffer].depth]; } reset(); } CRTFrameBuilder::~CRTFrameBuilder() { for(int buffer = 0; buffer < frame.number_of_buffers; buffer++) delete[] frame.buffers[buffer].data; delete frame.buffers; } void CRTFrameBuilder::reset() { frame.number_of_runs = 0; _next_write_x_position = _next_write_y_position = 0; frame.dirty_size.width = 0; frame.dirty_size.height = 1; } void CRTFrameBuilder::complete() { frame.runs = &_all_runs[0]; } uint8_t *CRTFrameBuilder::get_next_run() { const size_t vertices_per_run = 6; const size_t size_of_run = kCRTSizeOfVertex * vertices_per_run; // get a run from the allocated list, allocating more if we're about to overrun if(frame.number_of_runs * size_of_run >= _all_runs.size()) { _all_runs.resize(_all_runs.size() + size_of_run * 200); } uint8_t *next_run = &_all_runs[frame.number_of_runs * size_of_run]; frame.number_of_runs++; return next_run; } void CRTFrameBuilder::allocate_write_area(int required_length) { if (_next_write_x_position + required_length > frame.size.width) { _next_write_x_position = 0; _next_write_y_position = (_next_write_y_position+1)&(frame.size.height-1); frame.dirty_size.height++; } _write_x_position = _next_write_x_position; _write_y_position = _next_write_y_position; _write_target_pointer = (_write_y_position * frame.size.width) + _write_x_position; _next_write_x_position += required_length; frame.dirty_size.width = std::max(frame.dirty_size.width, _next_write_x_position); } uint8_t *CRTFrameBuilder::get_write_target_for_buffer(int buffer) { return &frame.buffers[buffer].data[_write_target_pointer * frame.buffers[buffer].depth]; }