// // TIA.cpp // Clock Signal // // Created by Thomas Harte on 28/01/2017. // Copyright © 2017 Thomas Harte. All rights reserved. // #include "TIA.hpp" using namespace Atari2600; namespace { const int cycles_per_line = 228; const int sync_flag = 0x1; const int blank_flag = 0x2; } TIA::TIA() : horizontal_counter_(0), output_cursor_(0), pixel_target_(nullptr), output_mode_(0) { crt_.reset(new Outputs::CRT::CRT(cycles_per_line * 2 + 1, 1, Outputs::CRT::DisplayType::NTSC60, 1)); crt_->set_output_device(Outputs::CRT::Television); set_output_mode(OutputMode::NTSC); } void TIA::set_output_mode(Atari2600::TIA::OutputMode output_mode) { // this is the NTSC phase offset function; see below for PAL crt_->set_composite_sampling_function( "float composite_sample(usampler2D texID, vec2 coordinate, vec2 iCoordinate, float phase, float amplitude)" "{" "uint c = texture(texID, coordinate).r;" "uint y = c & 14u;" "uint iPhase = (c >> 4);" "float phaseOffset = 6.283185308 * float(iPhase) / 13.0 + 5.074880441076923;" "return mix(float(y) / 14.0, step(1, iPhase) * cos(phase + phaseOffset), amplitude);" "}"); /* speaker_->set_input_rate((float)(get_clock_rate() / 38.0));*/ } TIA::~TIA() { } /*void Machine::switch_region() { // the PAL function crt_->set_composite_sampling_function( "float composite_sample(usampler2D texID, vec2 coordinate, vec2 iCoordinate, float phase, float amplitude)" "{" "uint c = texture(texID, coordinate).r;" "uint y = c & 14u;" "uint iPhase = (c >> 4);" "uint direction = iPhase & 1u;" "float phaseOffset = float(7u - direction) + (float(direction) - 0.5) * 2.0 * float(iPhase >> 1);" "phaseOffset *= 6.283185308 / 12.0;" "return mix(float(y) / 14.0, step(4, (iPhase + 2u) & 15u) * cos(phase + phaseOffset), amplitude);" "}"); crt_->set_new_timing(228, 312, Outputs::CRT::ColourSpace::YUV, 228, 1, true); is_pal_region_ = true; speaker_->set_input_rate((float)(get_clock_rate() / 38.0)); set_clock_rate(PAL_clock_rate); }*/ // justification for +5: "we need to wait at least 71 [clocks] before the HMOVE operation is complete"; // which will take 16*4 + 2 = 66 cycles from the first compare, implying the first compare must be // in five cycles from now void TIA::run_for_cycles(int number_of_cycles) { // if part way through a line, definitely perform a partial, at most up to the end of the line if(horizontal_counter_) { int cycles = std::min(number_of_cycles, cycles_per_line - horizontal_counter_); output_for_cycles(cycles); number_of_cycles -= cycles; } // output full lines for as long as possible while(number_of_cycles >= cycles_per_line) { output_line(); number_of_cycles -= cycles_per_line; } // partly start a new line if necessary if(number_of_cycles) { output_for_cycles(number_of_cycles); } } void TIA::set_sync(bool sync) { output_mode_ = (output_mode_ & ~sync_flag) | (sync ? sync_flag : 0); } void TIA::set_blank(bool blank) { output_mode_ = (output_mode_ & ~blank_flag) | (blank ? blank_flag : 0); } void TIA::reset_horizontal_counter() { } int TIA::get_cycles_until_horizontal_blank(unsigned int from_offset) { return cycles_per_line - (horizontal_counter_ + (int)from_offset) % cycles_per_line; } void TIA::set_background_colour(uint8_t colour) { background_colour_ = colour; } void TIA::set_playfield(uint16_t offset, uint8_t value) { } void TIA::set_playfield_control_and_ball_size(uint8_t value) { } void TIA::set_playfield_ball_colour(uint8_t colour) { playfield_ball_colour_ = colour; } void TIA::set_player_number_and_size(int player, uint8_t value) { } void TIA::set_player_graphic(int player, uint8_t value) { } void TIA::set_player_reflected(int player, bool reflected) { } void TIA::set_player_delay(int player, bool delay) { } void TIA::set_player_position(int player) { } void TIA::set_player_motion(int player, uint8_t motion) { } void TIA::set_player_missile_colour(int player, uint8_t colour) { } void TIA::set_missile_enable(int missile, bool enabled) { } void TIA::set_missile_position(int missile) { } void TIA::set_missile_position_to_player(int missile) { } void TIA::set_missile_motion(int missile, uint8_t motion) { } void TIA::set_ball_enable(bool enabled) { } void TIA::set_ball_delay(bool delay) { } void TIA::set_ball_position() { } void TIA::set_ball_motion(uint8_t motion) { } void TIA::move() { } void TIA::clear_motion() { } uint8_t TIA::get_collision_flags(int offset) { return 0xff; } void TIA::clear_collision_flags() { } // case 0: case 1: case 2: case 3: state = OutputState::Blank; break; // case 4: case 5: case 6: case 7: state = OutputState::Sync; break; // case 8: case 9: case 10: case 11: state = OutputState::ColourBurst; break; // case 12: case 13: case 14: // case 15: case 16: state = OutputState::Blank; break; // // case 17: case 18: state = vbextend ? OutputState::Blank : OutputState::Pixel; break; // default: state = OutputState::Pixel; break; void TIA::output_for_cycles(int number_of_cycles) { /* Line timing is oriented around 0 being the start of the right-hand side vertical blank; a wsync synchronises the CPU to horizontal_counter_ = 0. All timing below is in terms of the NTSC colour clock. Therefore, each line is composed of: 16 cycles: blank ; -> 16 16 cycles: sync ; -> 32 16 cycles: colour burst ; -> 48 20 cycles: blank ; -> 68 8 cycles: blank or pixels, depending on whether the blank extend bit is set 152 cycles: pixels */ horizontal_counter_ += number_of_cycles; #define Period(function, target) \ if(output_cursor_ < target) \ { \ if(horizontal_counter_ <= target) \ { \ crt_->function((unsigned int)((horizontal_counter_ - output_cursor_) * 2)); \ output_cursor_ = horizontal_counter_; \ return; \ } \ else \ { \ crt_->function((unsigned int)((target - output_cursor_) * 2)); \ output_cursor_ = target; \ } \ } switch(output_mode_) { default: Period(output_blank, 16) Period(output_sync, 32) Period(output_default_colour_burst, 48) Period(output_blank, 68) break; case sync_flag: case sync_flag | blank_flag: Period(output_sync, 16) Period(output_blank, 32) Period(output_default_colour_burst, 48) Period(output_sync, 228) break; } if(output_mode_ & blank_flag) { if(pixel_target_) { crt_->output_data((unsigned int)((horizontal_counter_ - pixel_target_origin_) * 2), 2); pixel_target_ = nullptr; } int duration = std::min(228, horizontal_counter_) - output_cursor_; crt_->output_blank((unsigned int)(duration * 2)); output_cursor_ += duration; } else { if(!pixel_target_) { pixel_target_ = crt_->allocate_write_area((unsigned int)(228 - output_cursor_)); pixel_target_origin_ = output_cursor_; } if(pixel_target_) { while(output_cursor_ < horizontal_counter_) { pixel_target_[output_cursor_ - 68] = (output_cursor_&1) ? playfield_ball_colour_ : background_colour_; output_cursor_++; } } else output_cursor_ = horizontal_counter_; if(horizontal_counter_ == cycles_per_line) { crt_->output_data((unsigned int)((horizontal_counter_ - pixel_target_origin_) * 2), 2); pixel_target_ = nullptr; } } horizontal_counter_ %= cycles_per_line; output_cursor_ %= cycles_per_line; } void TIA::output_line() { switch(output_mode_) { default: // TODO: optimise special case output_for_cycles(cycles_per_line); break; case sync_flag: case sync_flag | blank_flag: crt_->output_sync(32); crt_->output_blank(32); crt_->output_sync(392); break; case blank_flag: crt_->output_blank(32); crt_->output_sync(32); crt_->output_default_colour_burst(32); crt_->output_blank(360); break; } }