// // EmuTOSTests.m // Clock SignalTests // // Created by Thomas Harte on 10/03/2019. // Copyright © 2019 Thomas Harte. All rights reserved. // #import #include #include #include "68000.hpp" #include "CSROMFetcher.hpp" class EmuTOS: public CPU::MC68000::BusHandler { public: EmuTOS(const std::vector &emuTOS) : m68000_(*this) { assert(!(emuTOS.size() & 1)); emuTOS_.resize(emuTOS.size() / 2); for(size_t c = 0; c < emuTOS_.size(); ++c) { emuTOS_[c] = (emuTOS[c << 1] << 8) | emuTOS[(c << 1) + 1]; } } void run_for(HalfCycles cycles) { m68000_.run_for(cycles); } HalfCycles perform_bus_operation(const CPU::MC68000::Microcycle &cycle, int is_supervisor) { const uint32_t address = cycle.word_address(); uint32_t word_address = address; // As much about the Atari ST's memory map as is relevant here: the ROM begins // at 0xfc0000, and the first eight bytes are mirrored to the first four memory // addresses in order for /RESET to work properly. RAM otherwise fills the first // 512kb of the address space. Trying to write to ROM raises a bus error. const bool is_peripheral = word_address > (0xff0000 >> 1); const bool is_rom = word_address > (0xfc0000 >> 1) || word_address < 4; uint16_t *const base = is_rom ? emuTOS_.data() : ram_.data(); if(is_rom) { word_address &= 0xffff; } else { word_address &= 0x3ffff; } using Microcycle = CPU::MC68000::Microcycle; if(cycle.data_select_active()) { uint16_t peripheral_result = 0xffff; if(is_peripheral) { switch(address & 0x7ff) { // A hard-coded value for TIMER B. case (0xa21 >> 1): peripheral_result = 0x00000001; break; } printf("Peripheral: %c %08x", (cycle.operation & Microcycle::Read) ? 'r' : 'w', *cycle.address); if(!(cycle.operation & Microcycle::Read)) { if(cycle.operation & Microcycle::SelectByte) printf(" %02x", cycle.value->halves.low); else printf(" %04x", cycle.value->full); } printf("\n"); } switch(cycle.operation & (Microcycle::SelectWord | Microcycle::SelectByte | Microcycle::Read)) { default: break; case Microcycle::SelectWord | Microcycle::Read: cycle.value->full = is_peripheral ? peripheral_result : base[word_address]; if(!(cycle.operation & Microcycle::IsProgram)) printf("[word r %08x -> %04x] ", *cycle.address, cycle.value->full); break; case Microcycle::SelectByte | Microcycle::Read: cycle.value->halves.low = (is_peripheral ? peripheral_result : base[word_address]) >> cycle.byte_shift(); if(!(cycle.operation & Microcycle::IsProgram)) printf("[byte r %08x -> %02x] ", *cycle.address, cycle.value->halves.low); break; case Microcycle::SelectWord: assert(!(is_rom && !is_peripheral)); if(!(cycle.operation & Microcycle::IsProgram)) printf("[word w %04x -> %08x] ", cycle.value->full, *cycle.address); base[word_address] = cycle.value->full; break; case Microcycle::SelectByte: assert(!(is_rom && !is_peripheral)); if(!(cycle.operation & Microcycle::IsProgram)) printf("[byte w %02x -> %08x] ", cycle.value->halves.low, *cycle.address); base[word_address] = (cycle.value->halves.low << cycle.byte_shift()) | (base[word_address] & (0xffff ^ cycle.byte_mask())); break; } } return HalfCycles(0); } private: CPU::MC68000::Processor m68000_; std::vector emuTOS_; std::array ram_; }; @interface EmuTOSTests : XCTestCase @end @implementation EmuTOSTests { std::unique_ptr _machine; } - (void)setUp { // Put setup code here. This method is called before the invocation of each test method in the class. const auto roms = CSROMFetcher()("AtariST", {"tos100.img"}); _machine.reset(new EmuTOS(*roms[0])); } - (void)tearDown { // Put teardown code here. This method is called after the invocation of each test method in the class. } - (void)testStartup { // This is an example of a functional test case. // Use XCTAssert and related functions to verify your tests produce the correct results. _machine->run_for(HalfCycles(8000000)); } @end