// // OPL2.cpp // Clock Signal // // Created by Thomas Harte on 02/04/2020. // Copyright © 2020 Thomas Harte. all rights reserved. // #include "OPL2.hpp" #include namespace { /* Credit for the fixed register lists goes to Nuke.YKT; I found them at: https://siliconpr0n.org/archive/doku.php?id=vendor:yamaha:opl2#ym2413_instrument_rom The arrays below begin with channel 1, each line is a single channel and the format per channel is, from first byte to eighth: Bytes 1 and 2: Registers 1 and 2, i.e. modulator and carrier amplitude modulation select, vibrato select, etc. Byte 3: b7, b6: modulator key scale level b5...b0: modulator total level (inverted) Byte 4: b7: carrier key scale level b3...b0: feedback level and waveform selects as per register 4 Bytes 5, 6: Registers 4 and 5, i.e. decay and attack rate, modulator and carrier. Bytes 7, 8: Registers 6 and 7, i.e. decay-sustain level and release rate, modulator and carrier. */ constexpr uint8_t opll_patch_set[] = { 0x71, 0x61, 0x1e, 0x17, 0xd0, 0x78, 0x00, 0x17, 0x13, 0x41, 0x1a, 0x0d, 0xd8, 0xf7, 0x23, 0x13, 0x13, 0x01, 0x99, 0x00, 0xf2, 0xc4, 0x11, 0x23, 0x31, 0x61, 0x0e, 0x07, 0xa8, 0x64, 0x70, 0x27, 0x32, 0x21, 0x1e, 0x06, 0xe0, 0x76, 0x00, 0x28, 0x31, 0x22, 0x16, 0x05, 0xe0, 0x71, 0x00, 0x18, 0x21, 0x61, 0x1d, 0x07, 0x82, 0x81, 0x10, 0x07, 0x23, 0x21, 0x2d, 0x14, 0xa2, 0x72, 0x00, 0x07, 0x61, 0x61, 0x1b, 0x06, 0x64, 0x65, 0x10, 0x17, 0x41, 0x61, 0x0b, 0x18, 0x85, 0xf7, 0x71, 0x07, 0x13, 0x01, 0x83, 0x11, 0xfa, 0xe4, 0x10, 0x04, 0x17, 0xc1, 0x24, 0x07, 0xf8, 0xf8, 0x22, 0x12, 0x61, 0x50, 0x0c, 0x05, 0xc2, 0xf5, 0x20, 0x42, 0x01, 0x01, 0x55, 0x03, 0xc9, 0x95, 0x03, 0x02, 0x61, 0x41, 0x89, 0x03, 0xf1, 0xe4, 0x40, 0x13, }; constexpr uint8_t vrc7_patch_set[] = { 0x03, 0x21, 0x05, 0x06, 0xe8, 0x81, 0x42, 0x27, 0x13, 0x41, 0x14, 0x0d, 0xd8, 0xf6, 0x23, 0x12, 0x11, 0x11, 0x08, 0x08, 0xfa, 0xb2, 0x20, 0x12, 0x31, 0x61, 0x0c, 0x07, 0xa8, 0x64, 0x61, 0x27, 0x32, 0x21, 0x1e, 0x06, 0xe1, 0x76, 0x01, 0x28, 0x02, 0x01, 0x06, 0x00, 0xa3, 0xe2, 0xf4, 0xf4, 0x21, 0x61, 0x1d, 0x07, 0x82, 0x81, 0x11, 0x07, 0x23, 0x21, 0x22, 0x17, 0xa2, 0x72, 0x01, 0x17, 0x35, 0x11, 0x25, 0x00, 0x40, 0x73, 0x72, 0x01, 0xb5, 0x01, 0x0f, 0x0f, 0xa8, 0xa5, 0x51, 0x02, 0x17, 0xc1, 0x24, 0x07, 0xf8, 0xf8, 0x22, 0x12, 0x71, 0x23, 0x11, 0x06, 0x65, 0x74, 0x18, 0x16, 0x01, 0x02, 0xd3, 0x05, 0xc9, 0x95, 0x03, 0x02, 0x61, 0x63, 0x0c, 0x00, 0x94, 0xc0, 0x33, 0xf6, 0x21, 0x72, 0x0d, 0x00, 0xc1, 0xd5, 0x56, 0x06, }; constexpr uint8_t percussion_patch_set[] = { 0x01, 0x01, 0x18, 0x0f, 0xdf, 0xf8, 0x6a, 0x6d, 0x01, 0x01, 0x00, 0x00, 0xc8, 0xd8, 0xa7, 0x48, 0x05, 0x01, 0x00, 0x00, 0xf8, 0xaa, 0x59, 0x55, }; } using namespace Yamaha; OPL2::OPL2(Personality personality, Concurrency::DeferringAsyncTaskQueue &task_queue): task_queue_(task_queue) { (void)opll_patch_set; (void)vrc7_patch_set; (void)percussion_patch_set; // Populate the exponential and log-sine tables; formulas here taken from Matthew Gambrell // and Olli Niemitalo's decapping and reverse-engineering of the OPL2. for(int c = 0; c < 256; ++c) { exponential_[c] = int(round((pow(2.0, double(c) / 256.0) - 1.0) * 1024.0)); const double sine = sin((double(c) + 0.5) * M_PI/512.0); log_sin_[c] = int( round( -log(sine) / log(2.0) * 256.0 ) ); } } bool OPL2::is_zero_level() { return true; } void OPL2::get_samples(std::size_t number_of_samples, std::int16_t *target) { // TODO. // out = exp(logsin(phase2 + exp(logsin(phase1) + gain1)) + gain2) } void OPL2::set_sample_volume_range(std::int16_t range) { // TODO. } void OPL2::write(uint16_t address, uint8_t value) { if(address & 1) { set_opl2_register(selected_register_, value); } else { selected_register_ = value; } } uint8_t OPL2::read(uint16_t address) { // TODO. return 0xff; } void OPL2::set_opl2_register(uint8_t location, uint8_t value) { printf("OPL2 write: %02x to %d\n", value, selected_register_); // Deal with timer changes synchronously. switch(location) { case 0x02: timers_[0] = value; return; case 0x03: timers_[1] = value; return; case 0x04: timer_control_ = value; return; default: break; } // Enqueue any changes that affect audio output. task_queue_.enqueue([this, location, value] { // // Operator modifications. // if(location >= 0x20 && location <= 0x35) { operators_[location - 0x20].apply_amplitude_modulation = value & 0x80; operators_[location - 0x20].apply_vibrato = value & 0x40; operators_[location - 0x20].hold_sustain_level = value & 0x20; operators_[location - 0x20].keyboard_scaling_rate = value & 0x10; operators_[location - 0x20].frequency_multiple = value & 0xf; return; } if(location >= 0x40 && location <= 0x55) { operators_[location - 0x40].scaling_level = value >> 6; operators_[location - 0x40].output_level = value & 0x3f; return; } if(location >= 0x60 && location <= 0x75) { operators_[location - 0x60].attack_rate = value >> 5; operators_[location - 0x60].decay_rate = value & 0xf; return; } if(location >= 0x80 && location <= 0x95) { operators_[location - 0x60].sustain_level = value >> 5; operators_[location - 0x60].release_rate = value & 0xf; return; } if(location >= 0xe0 && location <= 0xf5) { operators_[location - 0xe0].waveform = value & 3; return; } // // Channel modifications. // if(location >= 0xa0 && location <= 0xa8) { channels_[location - 0xa0].frequency = (channels_[location - 0xa0].frequency & ~0xff) | value; return; } if(location >= 0xb0 && location <= 0xb8) { channels_[location - 0xb0].frequency = (channels_[location - 0xb0].frequency & 0xff) | ((value & 3) << 8); channels_[location - 0xb0].octave = (value >> 2) & 0x7; channels_[location - 0xb0].key_on = value & 0x20;; return; } if(location >= 0xc0 && location <= 0xc8) { channels_[location - 0xc0].feedback_strength = (value >> 1) & 0x7; channels_[location - 0xc0].two_operator = value & 1; return; } // // Modal modifications. // switch(location) { case 0x01: waveform_enable_ = value & 0x20; break; case 0x08: csm_keyboard_split_ = value; break; case 0xbd: depth_rhythm_control_ = value; break; default: break; } }); }