// // Video.cpp // Clock Signal // // Created by Thomas Harte on 14/04/2018. // Copyright © 2018 Thomas Harte. All rights reserved. // #include "Video.hpp" using namespace AppleII; Video::Video() : crt_(new Outputs::CRT::CRT(455, 1, Outputs::CRT::DisplayType::NTSC60, 1)) { // Set a composite sampling function that assumes 1bpp input, and uses just 7 bits per byte. crt_->set_composite_sampling_function( "float composite_sample(usampler2D sampler, vec2 coordinate, vec2 icoordinate, float phase, float amplitude)" "{" "uint texValue = texture(sampler, coordinate).r;" "texValue <<= int(icoordinate.x * 8) & 7;" "return float(texValue & 128u);" // "uint texValue = texture(sampler, coordinate).r;" // "texValue <<= uint(icoordinate.x * 7.0) % 7u;" // "return float(texValue & 128u);" "}"); // Show only the centre 75% of the TV frame. crt_->set_video_signal(Outputs::CRT::VideoSignal::Composite); crt_->set_visible_area(Outputs::CRT::Rect(0.115f, 0.115f, 0.77f, 0.77f)); } Outputs::CRT::CRT *Video::get_crt() { return crt_.get(); } void Video::run_for(const Cycles cycles) { /* Addressing scheme used throughout is that column 0 is the first column with pixels in it; row 0 is the first row with pixels in it. A frame is oriented around 65 cycles across, 262 lines down. */ const int first_sync_line = 220; // A complete guess. Information needed. const int first_sync_column = 49; // Also a guess. int int_cycles = cycles.as_int(); while(int_cycles) { const int cycles_this_line = std::min(65 - column_, int_cycles); if(row_ >= first_sync_line && row_ < first_sync_line + 3) { crt_->output_sync(static_cast(cycles_this_line) * 7); } else { const int ending_column = column_ + cycles_this_line; // The first 40 columns are submitted to the CRT only upon completion; // they'll be either graphics or blank, depending on which side we are // of line 192. if(column_ < 40) { if(row_ < 192) { if(!column_) { pixel_pointer_ = crt_->allocate_write_area(40); } // TODO: actually store pixels. if(ending_column >= 40) { for(int c = 0; c < 40; ++c) { pixel_pointer_[c] = static_cast((c * 6) ^ row_); } crt_->output_data(280, 7); } } else { if(ending_column >= 40) { crt_->output_blank(280); } } } /* The left border, sync, right border pattern doesn't depend on whether there were pixels this row and is output as soon as it is known. */ const int first_blank_start = std::max(40, column_); const int first_blank_end = std::min(first_sync_column, ending_column); if(first_blank_end > first_blank_start) { crt_->output_blank(static_cast(first_blank_end - first_blank_start) * 7); } // TODO: colour burst. const int sync_start = std::max(first_sync_column, column_); const int sync_end = std::min(first_sync_column + 4, ending_column); if(sync_end > sync_start) { crt_->output_sync(static_cast(sync_end - sync_start) * 7); } const int second_blank_start = std::max(first_sync_column + 4, column_); if(ending_column > second_blank_start) { crt_->output_blank(static_cast(ending_column - second_blank_start) * 7); } } int_cycles -= cycles_this_line; column_ = (column_ + cycles_this_line) % 65; if(!column_) { row_ = (row_ + 1) % 262; // Add an extra half a colour cycle of blank; this isn't counted in the run_for // count explicitly but is promised. crt_->output_blank(1); } } } void Video::set_graphics_mode() { printf("Graphics mode\n"); } void Video::set_text_mode() { printf("Text mode\n"); } void Video::set_mixed_mode(bool mixed_mode) { printf("Mixed mode: %s\n", mixed_mode ? "true" : "false"); } void Video::set_video_page(int page) { printf("Video page: %d\n", page); } void Video::set_low_resolution() { printf("Low resolution\n"); } void Video::set_high_resolution() { printf("High resolution\n"); }