// // CRT.cpp // Clock Signal // // Created by Thomas Harte on 19/07/2015. // Copyright © 2015 Thomas Harte. All rights reserved. // #include "CRT.hpp" #include #include using namespace Outputs; static const uint32_t kCRTFixedPointRange = 0xefffffff; static const uint32_t kCRTFixedPointOffset = 0x08000000; #define kRetraceXMask 0x01 #define kRetraceYMask 0x02 void CRT::set_new_timing(int cycles_per_line, int height_of_display) { const int syncCapacityLineChargeThreshold = 4; const int millisecondsHorizontalRetraceTime = 10; // source: Dictionary of Video and Television Technology, p. 234 const int scanlinesVerticalRetraceTime = 7; // source: ibid _time_multiplier = (1000 + cycles_per_line - 1) / cycles_per_line; height_of_display += (height_of_display / 20); // this is the overrun area we'll use to // store fundamental display configuration properties _height_of_display = height_of_display;// + (height_of_display / 10); _cycles_per_line = cycles_per_line * _time_multiplier; // generate timing values implied by the given arbuments _hsync_error_window = _cycles_per_line >> 5; _sync_capacitor_charge_threshold = (syncCapacityLineChargeThreshold * _cycles_per_line) >> 1; _horizontal_retrace_time = (millisecondsHorizontalRetraceTime * _cycles_per_line) >> 6; const int vertical_retrace_time = scanlinesVerticalRetraceTime * _cycles_per_line; _scanSpeed.x = kCRTFixedPointRange / _cycles_per_line; _scanSpeed.y = kCRTFixedPointRange / (_height_of_display * _cycles_per_line); _retraceSpeed.x = kCRTFixedPointRange / _horizontal_retrace_time; _retraceSpeed.y = kCRTFixedPointRange / vertical_retrace_time; // precompute the lengths of all four combinations of scan direction, for fast triangle // strip generation later float scanSpeedXfl = 1.0f / (float)_cycles_per_line; float scanSpeedYfl = 1.0f / (float)(_height_of_display * _cycles_per_line); float retraceSpeedXfl = 1.0f / (float)_horizontal_retrace_time; float retraceSpeedYfl = 1.0f / (float)(vertical_retrace_time); float lengths[4]; lengths[0] = sqrtf(scanSpeedXfl*scanSpeedXfl + scanSpeedYfl*scanSpeedYfl); lengths[kRetraceXMask] = sqrtf(retraceSpeedXfl*retraceSpeedXfl + scanSpeedYfl*scanSpeedYfl); lengths[kRetraceXMask | kRetraceYMask] = sqrtf(retraceSpeedXfl*retraceSpeedXfl + retraceSpeedYfl*retraceSpeedYfl); lengths[kRetraceYMask] = sqrtf(scanSpeedXfl*scanSpeedXfl + retraceSpeedYfl*retraceSpeedYfl); // width should be 1.0 / _height_of_display, rotated to match the direction float angle = atan2f(scanSpeedYfl, scanSpeedXfl); float halfLineWidth = (float)_height_of_display * 1.2f; _widths[0][0] = (sinf(angle) / halfLineWidth) * kCRTFixedPointRange; _widths[0][1] = (cosf(angle) / halfLineWidth) * kCRTFixedPointRange; } CRT::CRT(int cycles_per_line, int height_of_display, int number_of_buffers, ...) { set_new_timing(cycles_per_line, height_of_display); // generate buffers for signal storage as requested — format is // number of buffers, size of buffer 1, size of buffer 2... const int bufferWidth = 512; const int bufferHeight = 512; for(int frame = 0; frame < sizeof(_frame_builders) / sizeof(*_frame_builders); frame++) { va_list va; va_start(va, number_of_buffers); _frame_builders[frame] = new CRTFrameBuilder(bufferWidth, bufferHeight, number_of_buffers, va); va_end(va); } _frames_with_delegate = 0; _frame_read_pointer = 0; _current_frame_builder = _frame_builders[0]; // reset raster position _rasterPosition.x = _rasterPosition.y = 0; // reset flywheel sync _expected_next_hsync = _cycles_per_line; _horizontal_counter = 0; // reset the vertical charge capacitor _sync_capacitor_charge_level = 0; // start off not in horizontal sync, not receiving a sync signal _is_receiving_sync = false; _is_in_hsync = false; _is_in_vsync = false; } CRT::~CRT() { for(int frame = 0; frame < sizeof(_frame_builders) / sizeof(*_frame_builders); frame++) { delete _frame_builders[frame]; } } #pragma mark - Sync loop CRT::SyncEvent CRT::get_next_vertical_sync_event(bool vsync_is_charging, int cycles_to_run_for, int *cycles_advanced) { SyncEvent proposedEvent = SyncEvent::None; int proposedSyncTime = cycles_to_run_for; // have we overrun the maximum permitted number of horizontal syncs for this frame? if (!_is_in_vsync) { int time_until_end_of_frame = (kCRTFixedPointRange - _rasterPosition.y) / _scanSpeed.y; if(time_until_end_of_frame < proposedSyncTime) { proposedSyncTime = time_until_end_of_frame; proposedEvent = SyncEvent::StartVSync; } } else { int time_until_start_of_frame = _rasterPosition.y / _retraceSpeed.y; if(time_until_start_of_frame < proposedSyncTime) { proposedSyncTime = time_until_start_of_frame; proposedEvent = SyncEvent::EndVSync; } } // will an acceptable vertical sync be triggered? if (vsync_is_charging && !_is_in_vsync) { if (_sync_capacitor_charge_level < _sync_capacitor_charge_threshold && _sync_capacitor_charge_level + proposedSyncTime >= _sync_capacitor_charge_threshold) { uint32_t proposed_sync_y = _rasterPosition.y + (_sync_capacitor_charge_threshold - _sync_capacitor_charge_level) * _scanSpeed.y; if(proposed_sync_y >= (kCRTFixedPointRange * 7) >> 3) { proposedSyncTime = _sync_capacitor_charge_threshold - _sync_capacitor_charge_level; proposedEvent = SyncEvent::StartVSync; _did_detect_vsync = true; } } } *cycles_advanced = proposedSyncTime; return proposedEvent; } CRT::SyncEvent CRT::get_next_horizontal_sync_event(bool hsync_is_requested, int cycles_to_run_for, int *cycles_advanced) { // do we recognise this hsync, thereby adjusting future time expectations? if(hsync_is_requested) { if (_horizontal_counter < _hsync_error_window || _horizontal_counter >= _expected_next_hsync - _hsync_error_window) { _did_detect_hsync = true; int time_now = (_horizontal_counter < _hsync_error_window) ? _expected_next_hsync + _horizontal_counter : _horizontal_counter; _expected_next_hsync = (_expected_next_hsync + _expected_next_hsync + _expected_next_hsync + time_now) >> 2; } } SyncEvent proposedEvent = SyncEvent::None; int proposedSyncTime = cycles_to_run_for; // will we end an ongoing hsync? if (_horizontal_counter < _horizontal_retrace_time && _horizontal_counter+proposedSyncTime >= _horizontal_retrace_time) { proposedSyncTime = _horizontal_retrace_time - _horizontal_counter; proposedEvent = SyncEvent::EndHSync; } // will we start an hsync? if (_horizontal_counter + proposedSyncTime >= _expected_next_hsync) { proposedSyncTime = _expected_next_hsync - _horizontal_counter; proposedEvent = SyncEvent::StartHSync; } *cycles_advanced = proposedSyncTime; return proposedEvent; } void CRT::advance_cycles(int number_of_cycles, bool hsync_requested, const bool vsync_charging, const Type type, const char *data_type) { number_of_cycles *= _time_multiplier; bool is_output_run = ((type == Type::Level) || (type == Type::Data)); uint16_t tex_x = 0; uint16_t tex_y = 0; if(is_output_run && _current_frame_builder) { tex_x = _current_frame_builder->_write_x_position; tex_y = _current_frame_builder->_write_y_position; } while(number_of_cycles) { int time_until_vertical_sync_event, time_until_horizontal_sync_event; SyncEvent next_vertical_sync_event = this->get_next_vertical_sync_event(vsync_charging, number_of_cycles, &time_until_vertical_sync_event); SyncEvent next_horizontal_sync_event = this->get_next_horizontal_sync_event(hsync_requested, time_until_vertical_sync_event, &time_until_horizontal_sync_event); hsync_requested = false; // get the next sync event and its timing; hsync request is instantaneous (being edge triggered) so // set it to false for the next run through this loop (if any) int next_run_length = std::min(time_until_vertical_sync_event, time_until_horizontal_sync_event); uint16_t *next_run = (is_output_run && _current_frame_builder && next_run_length) ? _current_frame_builder->get_next_run() : nullptr; // int lengthMask = (_is_in_hsync ? kRetraceXMask : 0) | ((_vretrace_counter > 0) ? kRetraceXMask : 0); // uint32_t *width = _widths[lengthMask]; uint32_t *width = _widths[0]; #define position_x(v) next_run[kCRTSizeOfVertex*v + kCRTVertexOffsetOfPosition + 0] #define position_y(v) next_run[kCRTSizeOfVertex*v + kCRTVertexOffsetOfPosition + 1] #define tex_x(v) next_run[kCRTSizeOfVertex*v + kCRTVertexOffsetOfTexCoord + 0] #define tex_y(v) next_run[kCRTSizeOfVertex*v + kCRTVertexOffsetOfTexCoord + 1] #define lateral(v) next_run[kCRTSizeOfVertex*v + kCRTVertexOffsetOfLateral] if(next_run) { // set the type, initial raster position and type of this run position_x(0) = position_x(4) = (kCRTFixedPointOffset + _rasterPosition.x + width[0]) >> 16; position_y(0) = position_y(4) = (kCRTFixedPointOffset + _rasterPosition.y + width[1]) >> 16; position_x(1) = (kCRTFixedPointOffset + _rasterPosition.x - width[0]) >> 16; position_y(1) = (kCRTFixedPointOffset + _rasterPosition.y - width[1]) >> 16; tex_x(0) = tex_x(1) = tex_x(4) = tex_x; tex_y(0) = tex_y(4) = tex_y; tex_y(1) = tex_y + 1; } // advance the raster position as dictated by current sync status if (_is_in_hsync) _rasterPosition.x = (uint32_t)std::max((int64_t)0, (int64_t)_rasterPosition.x - number_of_cycles * (int64_t)_retraceSpeed.x); else _rasterPosition.x = (uint32_t)std::min((int64_t)kCRTFixedPointRange, (int64_t)_rasterPosition.x + number_of_cycles * (int64_t)_scanSpeed.x); if (_is_in_vsync) _rasterPosition.y = (uint32_t)std::max((int64_t)0, (int64_t)_rasterPosition.y - number_of_cycles * (int64_t)_retraceSpeed.y); else _rasterPosition.y = (uint32_t)std::min((int64_t)kCRTFixedPointRange, (int64_t)_rasterPosition.y + number_of_cycles * (int64_t)_scanSpeed.y); if(next_run) { // store the final raster position position_x(2) = position_x(3) = (kCRTFixedPointOffset + _rasterPosition.x - width[0]) >> 16; position_y(2) = position_y(3) = (kCRTFixedPointOffset + _rasterPosition.y - width[1]) >> 16; position_x(5) = (kCRTFixedPointOffset + _rasterPosition.x + width[0]) >> 16; position_y(5) = (kCRTFixedPointOffset + _rasterPosition.y + width[1]) >> 16; // if this is a data run then advance the buffer pointer if(type == Type::Data) tex_x += next_run_length / _time_multiplier; // if this is a data or level run then store the end point tex_x(2) = tex_x(3) = tex_x(5) = tex_x; tex_y(2) = tex_y(3) = tex_y+1; tex_y(5) = tex_y; } // decrement the number of cycles left to run for and increment the // horizontal counter appropriately number_of_cycles -= next_run_length; _horizontal_counter += next_run_length; // either charge or deplete the vertical retrace capacitor (making sure it stops at 0) if (vsync_charging) _sync_capacitor_charge_level += next_run_length; else _sync_capacitor_charge_level = std::max(_sync_capacitor_charge_level - next_run_length, 0); // react to the incoming event... if(next_run_length == time_until_horizontal_sync_event) { switch(next_horizontal_sync_event) { // start of hsync: zero the scanline counter, note that we're now in // horizontal sync, increment the lines-in-this-frame counter case SyncEvent::StartHSync: _horizontal_counter = 0; _is_in_hsync = true; break; // end of horizontal sync: update the flywheel's velocity, note that we're no longer // in horizontal sync case SyncEvent::EndHSync: if (!_did_detect_hsync) { _expected_next_hsync = (_expected_next_hsync + (_hsync_error_window >> 1) + _cycles_per_line) >> 1; } _did_detect_hsync = false; _is_in_hsync = false; break; default: break; } } if(next_run_length == time_until_vertical_sync_event) { switch(next_vertical_sync_event) { // start of vertical sync: reset the lines-in-this-frame counter, // load the retrace counter with the amount of time it'll take to retrace case SyncEvent::StartVSync: _is_in_vsync = true; break; // end of vertical sync: tell the delegate that we finished vertical sync, // releasing all runs back into the common pool case SyncEvent::EndVSync: if(_delegate && _current_frame_builder) { _current_frame_builder->complete(); _frames_with_delegate++; _delegate->crt_did_end_frame(this, &_current_frame_builder->frame, _did_detect_hsync); } if(_frames_with_delegate < kCRTNumberOfFrames) { _frame_read_pointer = (_frame_read_pointer + 1)%kCRTNumberOfFrames; _current_frame_builder = _frame_builders[_frame_read_pointer]; _current_frame_builder->reset(); } else _current_frame_builder = nullptr; _is_in_vsync = false; _did_detect_vsync = false; break; default: break; } } } } void CRT::return_frame() { _frames_with_delegate--; } #pragma mark - delegate void CRT::set_delegate(CRTDelegate *delegate) { _delegate = delegate; } #pragma mark - stream feeding methods /* These all merely channel into advance_cycles, supplying appropriate arguments */ void CRT::output_sync(int number_of_cycles) { bool _hsync_requested = !_is_receiving_sync; // ensure this really is edge triggered; someone calling output_sync twice in succession shouldn't trigger it twice _is_receiving_sync = true; advance_cycles(number_of_cycles, _hsync_requested, true, Type::Sync, nullptr); } void CRT::output_blank(int number_of_cycles) { _is_receiving_sync = false; advance_cycles(number_of_cycles, false, false, Type::Blank, nullptr); } void CRT::output_level(int number_of_cycles, const char *type) { _is_receiving_sync = false; advance_cycles(number_of_cycles, false, false, Type::Level, type); } void CRT::output_data(int number_of_cycles, const char *type) { _is_receiving_sync = false; advance_cycles(number_of_cycles, false, false, Type::Data, type); } #pragma mark - Buffer supply void CRT::allocate_write_area(int required_length) { if(_current_frame_builder) _current_frame_builder->allocate_write_area(required_length); } uint8_t *CRT::get_write_target_for_buffer(int buffer) { if (!_current_frame_builder) return nullptr; return _current_frame_builder->get_write_target_for_buffer(buffer); } #pragma mark - CRTFrame CRTFrameBuilder::CRTFrameBuilder(int width, int height, int number_of_buffers, va_list buffer_sizes) { frame.size.width = width; frame.size.height = height; frame.number_of_buffers = number_of_buffers; frame.buffers = new CRTBuffer[number_of_buffers]; for(int buffer = 0; buffer < number_of_buffers; buffer++) { frame.buffers[buffer].depth = va_arg(buffer_sizes, int); frame.buffers[buffer].data = new uint8_t[width * height * frame.buffers[buffer].depth]; } reset(); } CRTFrameBuilder::~CRTFrameBuilder() { for(int buffer = 0; buffer < frame.number_of_buffers; buffer++) delete[] frame.buffers[buffer].data; delete frame.buffers; } void CRTFrameBuilder::reset() { frame.number_of_runs = 0; _next_write_x_position = _next_write_y_position = 0; frame.dirty_size.width = frame.dirty_size.height = 0; } void CRTFrameBuilder::complete() { frame.runs = &_all_runs[0]; } uint16_t *CRTFrameBuilder::get_next_run() { const size_t vertices_per_run = 6; const size_t size_of_run = kCRTSizeOfVertex * vertices_per_run; // get a run from the allocated list, allocating more if we're about to overrun if(frame.number_of_runs * size_of_run >= _all_runs.size()) { _all_runs.resize(_all_runs.size() + size_of_run * 200); } uint16_t *next_run = &_all_runs[frame.number_of_runs * size_of_run]; frame.number_of_runs++; return next_run; } void CRTFrameBuilder::allocate_write_area(int required_length) { if (_next_write_x_position + required_length > frame.size.width) { _next_write_x_position = 0; _next_write_y_position = (_next_write_y_position+1)&(frame.size.height-1); frame.dirty_size.height++; } _write_x_position = _next_write_x_position; _write_y_position = _next_write_y_position; _write_target_pointer = (_write_y_position * frame.size.width) + _write_x_position; _next_write_x_position += required_length; frame.dirty_size.width = std::max(frame.dirty_size.width, _next_write_x_position); } uint8_t *CRTFrameBuilder::get_write_target_for_buffer(int buffer) { return &frame.buffers[buffer].data[_write_target_pointer * frame.buffers[buffer].depth]; }