// // AmstradCPC.cpp // Clock Signal // // Created by Thomas Harte on 30/07/2017. // Copyright © 2017 Thomas Harte. All rights reserved. // #include "AmstradCPC.hpp" #include "../../Processors/Z80/Z80.hpp" #include "../../Components/AY38910/AY38910.hpp" #include "../../Components/6845/CRTC6845.hpp" using namespace AmstradCPC; struct CRTCBusHandler { public: CRTCBusHandler() : cycles_(0), was_enabled_(false), was_sync_(false), pixel_data_(nullptr), pixel_pointer_(nullptr) {} inline void perform_bus_cycle(const Motorola::CRTC::BusState &state) { cycles_++; bool is_sync = state.hsync || state.vsync; // collect some more pixels if output is ongoing if(!is_sync && state.display_enable) { if(!pixel_data_) { pixel_pointer_ = pixel_data_ = crt_->allocate_write_area(320); } if(pixel_pointer_) { *pixel_pointer_++ = 0xff; // flush the current buffer if full if(pixel_pointer_ == pixel_data_ + 320) { crt_->output_data(320, 16); pixel_pointer_ = pixel_data_ = nullptr; } } } // if a transition between sync/border/pixels just occurred, announce it if(state.display_enable != was_enabled_ || is_sync != was_sync_) { if(was_sync_) { crt_->output_sync((unsigned int)(cycles_ * 16)); } else { if(was_enabled_) { crt_->output_data((unsigned int)(cycles_ * 16), 16); pixel_pointer_ = pixel_data_ = nullptr; } else { uint8_t *colour_pointer = (uint8_t *)crt_->allocate_write_area(1); if(colour_pointer) *colour_pointer = 0x00; crt_->output_level((unsigned int)(cycles_ * 16)); } } cycles_ = 0; was_sync_ = is_sync; was_enabled_ = state.display_enable; } } void setup_output(float aspect_ratio) { crt_.reset(new Outputs::CRT::CRT(1024, 16, Outputs::CRT::DisplayType::PAL50, 1)); crt_->set_rgb_sampling_function( "vec3 rgb_sample(usampler2D sampler, vec2 coordinate, vec2 icoordinate)" "{" "return vec3(float(texture(texID, coordinate).r) / 255.0);" "}"); } void close_output() { crt_.reset(); } std::shared_ptr get_crt() { return crt_; } private: int cycles_; bool was_enabled_, was_sync_; std::shared_ptr crt_; uint8_t *pixel_data_, *pixel_pointer_; }; class ConcreteMachine: public CPU::Z80::Processor, public Machine { public: ConcreteMachine() : crtc_counter_(HalfCycles(4)), // This starts the CRTC exactly out of phase with the memory accesses crtc_(crtc_bus_handler_) { // primary clock is 4Mhz set_clock_rate(4000000); } inline HalfCycles perform_machine_cycle(const CPU::Z80::PartialMachineCycle &cycle) { // Amstrad CPC timing scheme: assert WAIT for three out of four cycles clock_offset_ = (clock_offset_ + cycle.length) & HalfCycles(7); set_wait_line(clock_offset_ >= HalfCycles(2)); // Update the CRTC once every eight half cycles; aiming for half-cycle 4 as // per the initial seed to the crtc_counter_, but any time in the final four // will do as it's safe to conclude that nobody else has touched video RAM // during that whole window crtc_counter_ += cycle.length; int crtc_cycles = crtc_counter_.divide(HalfCycles(8)).as_int(); if(crtc_cycles) crtc_.run_for(Cycles(1)); // Stop now if no action is strictly required. if(!cycle.is_terminal()) return HalfCycles(0); uint16_t address = cycle.address ? *cycle.address : 0x0000; switch(cycle.operation) { case CPU::Z80::PartialMachineCycle::ReadOpcode: case CPU::Z80::PartialMachineCycle::Read: *cycle.value = read_pointers_[address >> 14][address & 16383]; break; case CPU::Z80::PartialMachineCycle::Write: write_pointers_[address >> 14][address & 16383] = *cycle.value; break; case CPU::Z80::PartialMachineCycle::Output: // Check for a gate array access. if((address & 0xc000) == 0x4000) { switch(*cycle.value >> 6) { case 0: printf("Select pen %02x\n", *cycle.value & 0x1f); break; case 1: printf("Select colour %02x\n", *cycle.value & 0x1f); break; case 2: printf("Set mode %d, other flags %02x\n", *cycle.value & 3, (*cycle.value >> 2)&7); read_pointers_[0] = (*cycle.value & 4) ? &ram_[0] : os_.data(); read_pointers_[3] = (*cycle.value & 8) ? &ram_[49152] : basic_.data(); break; case 3: printf("RAM paging?\n"); break; } } // Check for a CRTC access if(!(address & 0x4000)) { switch((address >> 8) & 3) { case 0: crtc_.select_register(*cycle.value); break; case 1: crtc_.set_register(*cycle.value); break; case 2: case 3: printf("Illegal CRTC write?\n"); break; } } // Check for a PIO access if(!(address & 0x800)) { switch((address >> 8) & 3) { case 0: printf("PSG data: %d\n", *cycle.value); break; case 1: printf("Vsync, etc: %02x\n", *cycle.value); break; case 2: printf("Key row, etc: %02x\n", *cycle.value); break; case 3: printf("PIO control: %02x\n", *cycle.value); break; } } break; case CPU::Z80::PartialMachineCycle::Input: // Check for a CRTC access if(!(address & 0x4000)) { switch((address >> 8) & 3) { case 0: case 1: printf("Illegal CRTC read?\n"); break; case 2: *cycle.value = crtc_.get_status(); break; case 3: *cycle.value = crtc_.get_register(); break; } } // Check for a PIO access if(!(address & 0x800)) { switch((address >> 8) & 3) { case 0: printf("[In] PSG data\n"); break; case 1: printf("[In] Vsync, etc\n"); break; case 2: printf("[In] Key row, etc\n"); break; case 3: printf("[In] PIO control\n"); break; } } *cycle.value = 0xff; break; case CPU::Z80::PartialMachineCycle::Interrupt: *cycle.value = 0xff; break; default: break; } return HalfCycles(0); } void flush() {} void setup_output(float aspect_ratio) { crtc_bus_handler_.setup_output(aspect_ratio); } void close_output() { crtc_bus_handler_.close_output(); } std::shared_ptr get_crt() { return crtc_bus_handler_.get_crt(); } std::shared_ptr get_speaker() { return nullptr; } void run_for(const Cycles cycles) { CPU::Z80::Processor::run_for(cycles); } void configure_as_target(const StaticAnalyser::Target &target) { // Establish reset memory map as per machine model (or, for now, as a hard-wired 464) read_pointers_[0] = os_.data(); read_pointers_[1] = &ram_[16384]; read_pointers_[2] = &ram_[32768]; read_pointers_[3] = basic_.data(); write_pointers_[0] = &ram_[0]; write_pointers_[1] = &ram_[16384]; write_pointers_[2] = &ram_[32768]; write_pointers_[3] = &ram_[49152]; } void set_rom(ROMType type, std::vector data) { // Keep only the two ROMs that are currently of interest. switch(type) { case ROMType::OS464: os_ = data; break; case ROMType::BASIC464: basic_ = data; break; default: break; } } private: CRTCBusHandler crtc_bus_handler_; Motorola::CRTC::CRTC6845 crtc_; HalfCycles clock_offset_; HalfCycles crtc_counter_; uint8_t ram_[65536]; std::vector os_, basic_; uint8_t *read_pointers_[4]; uint8_t *write_pointers_[4]; }; Machine *Machine::AmstradCPC() { return new ConcreteMachine; }