// // 9918.cpp // Clock Signal // // Created by Thomas Harte on 25/11/2017. // Copyright © 2017 Thomas Harte. All rights reserved. // #include "9918.hpp" using namespace TI; namespace { const uint32_t palette_pack(uint8_t r, uint8_t g, uint8_t b) { uint32_t result = 0; uint8_t *result_ptr = reinterpret_cast(&result); result_ptr[0] = r; result_ptr[1] = g; result_ptr[2] = b; result_ptr[3] = 0; return result; } const uint32_t palette[16] = { palette_pack(0, 0, 0), palette_pack(0, 0, 0), palette_pack(90, 201, 81), palette_pack(149, 231, 133), palette_pack(113, 104, 183), palette_pack(146, 132, 255), palette_pack(200, 114, 89), palette_pack(115, 222, 255), palette_pack(238, 124, 90), palette_pack(255, 166, 132), palette_pack(219, 232, 92), palette_pack(240, 247, 143), palette_pack(78, 176, 63), palette_pack(202, 118, 216), palette_pack(233, 233, 233), palette_pack(255, 255, 255) }; } TMS9918::TMS9918(Personality p) : crt_(new Outputs::CRT::CRT(342, 1, Outputs::CRT::DisplayType::NTSC60, 4)) { crt_->set_rgb_sampling_function( "vec3 rgb_sample(usampler2D sampler, vec2 coordinate, vec2 icoordinate)" "{" "return texture(sampler, coordinate).rgb / vec3(255.0);" "}"); crt_->set_output_device(Outputs::CRT::OutputDevice::Monitor); } std::shared_ptr TMS9918::get_crt() { return crt_; } void TMS9918::run_for(const HalfCycles cycles) { // As specific as I've been able to get: // Scanline time is always 227.75 cycles. // PAL output is 313 lines total. NTSC output is 262 lines total. // Interrupt is signalled upon entering the lower border. // Keep a count of cycles separate from internal counts to avoid // potential errors mapping back and forth. half_cycles_into_frame_ = (half_cycles_into_frame_ + cycles) % HalfCycles(frame_lines_ * 228 * 2); // Convert to 342 cycles per line; the internal clock is 1.5 times the // nominal 3.579545 Mhz that I've advertised for this part. int int_cycles = (cycles.as_int() * 3) + cycles_error_; cycles_error_ = int_cycles & 7; int_cycles >>= 3; if(!int_cycles) return; // // Break that down as: // 26 cycles sync; while(int_cycles) { int cycles_left = std::min(342 - column_, int_cycles); column_ += cycles_left; int_cycles -= cycles_left; if(row_ < 192 && !blank_screen_) { // ------------------------ // Perform memory accesses. // ------------------------ const int access_slot = column_ >> 1; // There are only 171 available memory accesses per line. switch(line_mode_) { case LineMode::Text: while(access_pointer_ < access_slot) { if(access_pointer_ < 29) { access_pointer_ = std::min(29, access_slot); } if(access_pointer_ >= 29) { int row_base = pattern_name_address_ + (row_ >> 3) * 40; int character_column = (access_pointer_ - 29) / 3; const int end = std::min(149, access_slot); while(access_pointer_ < end) { switch(access_pointer_%3) { case 2: pattern_name_ = ram_[row_base + character_column]; break; case 1: break; // TODO: CPU access. case 0: pattern_buffer_[character_column] = ram_[pattern_generator_table_address_ + (pattern_name_ << 3) + (row_ & 7)]; character_column++; break; } access_pointer_++; } } if(access_pointer_ >= 149) { access_pointer_ = access_slot; } } break; case LineMode::Character: while(access_pointer_ < access_slot) { if(access_pointer_ < 26) { access_pointer_ = std::min(26, access_slot); } if(access_pointer_ >= 26) { int end = std::min(154, access_slot); // TODO: optimise this mess. const int row_base = pattern_name_address_ + ((row_ << 2)&~31); while(access_pointer_ < end) { int character_column = ((access_pointer_ - 26) >> 2); switch(access_pointer_&3) { case 0: pattern_name_ = ram_[row_base + character_column]; break; case 1: break; // TODO: sprites / CPU access. case 2: colour_buffer_[character_column] = ram_[colour_table_address_ + (pattern_name_ >> 3)]; break; case 3: pattern_buffer_[character_column] = ram_[pattern_generator_table_address_ + (pattern_name_ << 3) + (row_ & 7)]; break; } access_pointer_++; } } if(access_pointer_ >= 154) { access_pointer_ = access_slot; } } break; } // -------------------- // End memory accesses. // -------------------- // ---------------------- // Output horizontal sync // ---------------------- if(!output_column_ && column_ >= 26) { crt_->output_sync(static_cast(26)); output_column_ = 26; } // -------------------------- // TODO: output colour burst. // -------------------------- // ------------------- // Output left border. // ------------------- if(output_column_ >= 26) { int pixels_end = std::min(first_pixel_column_, column_); if(output_column_ < pixels_end) { output_border(pixels_end - output_column_); output_column_ = pixels_end; // Grab a pointer for drawing pixels to, if the moment has arrived. if(pixels_end == first_pixel_column_) { pixel_target_ = reinterpret_cast(crt_->allocate_write_area(static_cast(first_right_border_column_ - first_pixel_column_))); } } } // -------------- // Output pixels. // -------------- if(output_column_ >= first_pixel_column_) { int pixels_end = std::min(first_right_border_column_, column_); if(output_column_ < pixels_end) { switch(line_mode_) { case LineMode::Text: while(output_column_ < pixels_end) { const int base = (output_column_ - first_pixel_column_); const int address = base / 6; const uint8_t pattern = pattern_buffer_[address] << (base % 6); *pixel_target_ = (pattern&0x80) ? palette[text_colour_] : palette[background_colour_]; pixel_target_ ++; output_column_ ++; } break; case LineMode::Character: while(output_column_ < pixels_end) { int base = (output_column_ - first_pixel_column_); int address = base >> 3; uint8_t colour = colour_buffer_[address]; uint8_t pattern = pattern_buffer_[address]; pattern >>= ((base&7)^7); *pixel_target_ = (pattern&1) ? palette[colour >> 4] : palette[colour & 15]; pixel_target_ ++; output_column_ ++; } break; } if(output_column_ == first_right_border_column_) { crt_->output_data(static_cast(first_right_border_column_ - first_pixel_column_), 1); pixel_target_ = nullptr; } } } // -------------------- // Output right border. // -------------------- if(output_column_ >= first_right_border_column_) { output_border(column_ - output_column_); output_column_ = column_; } } else if(row_ >= first_vsync_line_ && row_ < first_vsync_line_+3) { // Vertical sync. if(column_ == 342) { crt_->output_sync(static_cast(342)); } } else { // Blank. if(!output_column_ && column_ >= 26) { crt_->output_sync(static_cast(26)); output_column_ = 26; } if(output_column_ >= 26) { output_border(column_ - output_column_); output_column_ = column_; } } if(column_ == 342) { access_pointer_ = column_ = output_column_ = 0; row_ = (row_ + 1) % frame_lines_; if(row_ == 192) status_ |= 0x80; screen_mode_ = next_screen_mode_; blank_screen_ = next_blank_screen_; switch(screen_mode_) { case 2: line_mode_ = LineMode::Text; first_pixel_column_ = 69; first_right_border_column_ = 309; break; default: line_mode_ = LineMode::Character; first_pixel_column_ = 63; first_right_border_column_ = 319; break; } } } } void TMS9918::output_border(int cycles) { pixel_target_ = reinterpret_cast(crt_->allocate_write_area(1)); if(pixel_target_) *pixel_target_ = palette[background_colour_]; crt_->output_level(static_cast(cycles)); } // TODO: as a temporary development measure, memory access below is magically instantaneous. Correct that. void TMS9918::set_register(int address, uint8_t value) { // Writes to address 0 are writes to the video RAM. Store // the value and return. if(!(address & 1)) { write_phase_ = false; read_ahead_buffer_ = value; ram_[ram_pointer_ & 16383] = value; ram_pointer_++; return; } // Writes to address 1 are performed in pairs; if this is the // low byte of a value, store it and wait for the high byte. if(!write_phase_) { low_write_ = value; write_phase_ = true; return; } write_phase_ = false; if(value & 0x80) { // This is a write to a register. switch(value & 7) { case 0: next_screen_mode_ = (next_screen_mode_ & 6) | ((low_write_ & 2) >> 1); printf("NSM: %02x\n", next_screen_mode_); break; case 1: next_blank_screen_ = !(low_write_ & 0x40); generate_interrupts_ = !!(low_write_ & 0x20); next_screen_mode_ = (screen_mode_ & 1) | ((low_write_ & 0x18) >> 3); sprites_16x16_ = !!(low_write_ & 0x02); sprites_magnified_ = !!(low_write_ & 0x01); printf("NSM: %02x\n", next_screen_mode_); break; case 2: pattern_name_address_ = static_cast((low_write_ & 0xf) << 10); break; case 3: colour_table_address_ = static_cast(low_write_ << 6); break; case 4: pattern_generator_table_address_ = static_cast((low_write_ & 0x07) << 11); break; case 5: sprite_attribute_table_address_ = static_cast((low_write_ & 0x7f) << 7); break; case 6: sprite_generator_table_address_ = static_cast((low_write_ & 0x07) << 11); break; case 7: text_background_colour_ = low_write_; text_colour_ = low_write_ >> 4; background_colour_ = low_write_ & 0xf; break; } } else { // This is a write to the RAM pointer. ram_pointer_ = static_cast(low_write_ | (value << 8)); if(!(value & 0x40)) { // Officially a 'read' set, so perform lookahead. read_ahead_buffer_ = ram_[ram_pointer_ & 16383]; ram_pointer_++; } } } uint8_t TMS9918::get_register(int address) { write_phase_ = false; // Reads from address 0 read video RAM, via the read-ahead buffer. if(!(address & 1)) { uint8_t result = read_ahead_buffer_; read_ahead_buffer_ = ram_[ram_pointer_ & 16383]; ram_pointer_++; return result; } // Reads from address 1 get the status register; uint8_t result = status_; status_ &= ~(0x80 | 0x20); return result; } HalfCycles TMS9918::get_time_until_interrupt() { if(!generate_interrupts_) return HalfCycles(-1); if(get_interrupt_line()) return HalfCycles(-1); const int half_cycles_per_frame = frame_lines_ * 228 * 2; int half_cycles_remaining = (192 * 228 * 2 + half_cycles_per_frame - half_cycles_into_frame_.as_int()) % half_cycles_per_frame; return HalfCycles(half_cycles_remaining); } bool TMS9918::get_interrupt_line() { return (status_ & 0x80) && generate_interrupts_; }