// // AY-3-8910.hpp // Clock Signal // // Created by Thomas Harte on 14/10/2016. // Copyright 2016 Thomas Harte. All rights reserved. // #pragma once #include "../../Outputs/Speaker/Implementation/BufferSource.hpp" #include "../../Concurrency/AsyncTaskQueue.hpp" #include "../../Reflection/Struct.hpp" namespace GI::AY38910 { /*! A port handler provides all input for an AY's two 8-bit ports, and may optionally receive active notification of changes in output. Machines with an AY without ports or with nothing wired to them need not supply a port handler. Machines that use the AY ports as output but for which polling for changes is acceptable can instead use AY38910.get_port_output. */ class PortHandler { public: /*! Requests the current input on an AY port. @param port_b @c true if the input being queried is Port B. @c false if it is Port A. */ virtual uint8_t get_port_input([[maybe_unused]] bool port_b) { return 0xff; } /*! Sets the current output on an AY port. @param port_b @c true if the output being posted is Port B. @c false if it is Port A. @param value the value now being output. */ virtual void set_port_output([[maybe_unused]] bool port_b, [[maybe_unused]] uint8_t value) {} }; /*! Names the control lines used as input to the AY, which uses CP1600 bus semantics. */ enum ControlLines { BC1 = (1 << 0), BC2 = (1 << 1), BDIR = (1 << 2) }; enum class Personality { /// Provides 16 volume levels to envelopes. AY38910, /// Provides 32 volume levels to envelopes. YM2149F }; /*! Provides emulation of an AY-3-8910 / YM2149, which is a three-channel sound chip with a noise generator and a volume envelope generator, which also provides two bidirectional interface ports. This AY has an attached mono or stereo mixer. */ template class AY38910: public ::Outputs::Speaker::BufferSource, stereo> { public: /// Creates a new AY38910. AY38910(Personality, Concurrency::AsyncTaskQueue &); /// Sets the value the AY would read from its data lines if it were not outputting. void set_data_input(uint8_t r); /// Gets the value that would appear on the data lines if only the AY is outputting. uint8_t get_data_output(); /// Sets the current control line state, as a bit field. void set_control_lines(ControlLines control_lines); /*! Gets the value that would appear on the requested interface port if it were in output mode. @parameter port_b @c true to get the value for Port B, @c false to get the value for Port A. */ uint8_t get_port_output(bool port_b); /*! Sets the port handler, which will receive a call every time the AY either wants to sample input or else declare new output. As a convenience, current port output can be obtained without installing a port handler via get_port_output. */ void set_port_handler(PortHandler *); /*! Enables or disables stereo output; if stereo output is enabled then also sets the weight of each of the AY's channels in each of the output channels. If a_left_ = b_left = c_left = a_right = b_right = c_right = 1.0 then you'll get output that's effectively mono. a_left = 0.0, a_right = 1.0 will make A full volume on the right output, and silent on the left. a_left = 0.5, a_right = 0.5 will make A half volume on both outputs. */ void set_output_mixing(float a_left, float b_left, float c_left, float a_right = 1.0, float b_right = 1.0, float c_right = 1.0); // Buffer generation. template void apply_samples(std::size_t number_of_samples, typename Outputs::Speaker::SampleT::type *target); bool is_zero_level() const; void set_sample_volume_range(std::int16_t range); private: Concurrency::AsyncTaskQueue &task_queue_; int selected_register_ = 0; uint8_t registers_[16] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; uint8_t output_registers_[16] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; int master_divider_ = 0; int tone_periods_[3] = {0, 0, 0}; int tone_counters_[3] = {0, 0, 0}; int tone_outputs_[3] = {0, 0, 0}; int noise_period_ = 0; int noise_counter_ = 0; int noise_shift_register_ = 0xffff; int noise_output_ = 0; int envelope_period_ = 0; int envelope_divider_ = 0; int envelope_position_ = 0, envelope_position_mask_ = 0; int envelope_shapes_[16][64]; int envelope_overflow_masks_[16]; int volumes_[32]; enum ControlState { Inactive, LatchAddress, Read, Write } control_state_; void select_register(uint8_t r); void set_register_value(uint8_t value); uint8_t get_register_value(); uint8_t data_input_, data_output_; typename Outputs::Speaker::SampleT::type output_volume_; void update_bus(); PortHandler *port_handler_ = nullptr; void set_port_output(bool port_b); void evaluate_output_volume(); // Output mixing control. uint8_t a_left_ = 255, a_right_ = 255; uint8_t b_left_ = 255, b_right_ = 255; uint8_t c_left_ = 255, c_right_ = 255; friend struct State; }; /*! Provides helper code, to provide something closer to the interface exposed by many AY-deploying machines of the era. */ struct Utility { template static void write(AY &ay, bool is_data_write, uint8_t data) { ay.set_control_lines(GI::AY38910::ControlLines(GI::AY38910::BDIR | GI::AY38910::BC2 | (is_data_write ? 0 : GI::AY38910::BC1))); ay.set_data_input(data); ay.set_control_lines(GI::AY38910::ControlLines(0)); } template static void select_register(AY &ay, uint8_t reg) { write(ay, false, reg); } template static void write_data(AY &ay, uint8_t reg) { write(ay, true, reg); } template static uint8_t read(AY &ay) { ay.set_control_lines(GI::AY38910::ControlLines(GI::AY38910::BC2 | GI::AY38910::BC1)); const uint8_t result = ay.get_data_output(); ay.set_control_lines(GI::AY38910::ControlLines(0)); return result; } }; struct State: public Reflection::StructImpl { uint8_t registers[16]{}; uint8_t selected_register = 0; // TODO: all audio-production thread state. State() { if(needs_declare()) { DeclareField(registers); DeclareField(selected_register); } } template void apply(AY &target) { // Establish emulator-thread state for(uint8_t c = 0; c < 16; c++) { target.select_register(c); target.set_register_value(registers[c]); } target.select_register(selected_register); } }; }