// // Chipset.cpp // Clock Signal // // Created by Thomas Harte on 22/07/2021. // Copyright © 2021 Thomas Harte. All rights reserved. // #include "Chipset.hpp" //#define NDEBUG #define LOG_PREFIX "[Amiga chipset] " #include "../../Outputs/Log.hpp" #include #include using namespace Amiga; namespace { template struct Mask { static constexpr uint16_t value = 0; }; template struct Mask { static constexpr uint16_t value = uint16_t(F) | Mask::value; }; template struct InterruptMask: Mask {}; template struct DMAMask: Mask {}; } Chipset::Chipset(uint16_t *ram, size_t word_size) : blitter_(*this, ram, word_size), bitplanes_(*this, ram, word_size), copper_(*this, ram, word_size), disk_(*this, ram, word_size), crt_(908, 4, Outputs::Display::Type::PAL50, Outputs::Display::InputDataType::Red4Green4Blue4) { } Chipset::Changes Chipset::run_for(HalfCycles length) { return run(length); } Chipset::Changes Chipset::run_until_cpu_slot() { return run(); } void Chipset::set_cia_interrupts(bool cia_a, bool cia_b) { // TODO: are these really latched, or are they active live? interrupt_requests_ &= ~InterruptMask::value; interrupt_requests_ |= (cia_a ? InterruptMask::value : 0) | (cia_b ? InterruptMask::value : 0); update_interrupts(); } void Chipset::posit_interrupt(InterruptFlag flag) { interrupt_requests_ |= uint16_t(flag); update_interrupts(); } template void Chipset::output() { // Notes to self on guesses below: // // Hardware stop is at 0x18; // 12/64 * 227 = 42.5625 // // "However, horizontal blanking actually limits the displayable // video to 368 low resolution pixel" // // => 184 windows out of 227 are visible, which concurs. // // A complete from-thin-air guess: // // 7 cycles blank; // 17 cycles sync; // 3 cycles blank; // 9 cycles colour burst; // 7 cycles blank. constexpr int blank1 = 7; constexpr int sync = 17 + blank1; constexpr int blank2 = 3 + sync; constexpr int burst = 9 + blank2; constexpr int blank3 = 7 + burst; static_assert(blank3 == 43); #define LINK(location, action, length) \ if(cycle == (location)) { \ crt_.action((length) * 4); \ } if(y_ < vertical_blank_height_) { // Put three lines of sync at the centre of the vertical blank period. // Offset by half a line if interlaced and on an odd frame. const int midline = vertical_blank_height_ >> 1; if(frame_height_ & 1) { if(y_ < midline - 1 || y_ > midline + 2) { LINK(blank1, output_blank, blank1); LINK(sync, output_sync, sync - blank1); LINK(line_length_ - 1, output_blank, line_length_ - 1 - sync); } else if(y_ == midline - 1) { LINK(113, output_blank, 113); LINK(line_length_ - 1, output_sync, line_length_ - 1 - 113); } else if(y_ == midline + 2) { LINK(113, output_sync, 113); LINK(line_length_ - 1, output_blank, line_length_ - 1 - 113); } else { LINK(blank1, output_sync, blank1); LINK(sync, output_blank, sync - blank1); LINK(line_length_ - 1, output_sync, line_length_ - 1 - sync); } } else { if(y_ < midline - 1 || y_ > midline + 1) { LINK(blank1, output_blank, blank1); LINK(sync, output_sync, sync - blank1); LINK(line_length_ - 1, output_blank, line_length_ - 1 - sync); } else { LINK(blank1, output_sync, blank1); LINK(sync, output_blank, sync - blank1); LINK(line_length_ - 1, output_sync, line_length_ - 1 - sync); } } } else { // Output the correct sequence of blanks, syncs and burst atomically. LINK(blank1, output_blank, blank1); LINK(sync, output_sync, sync - blank1); LINK(blank2, output_blank, blank2 - sync); LINK(burst, output_default_colour_burst, burst - blank2); // TODO: only if colour enabled. LINK(blank3, output_blank, blank3 - burst); display_horizontal_ |= (cycle*2) == fetch_window_[0]; display_horizontal_ &= (cycle*2) != fetch_window_[1]; if constexpr (cycle > blank3) { const bool is_pixel_display = display_horizontal_ && fetch_vertical_; if( (is_pixel_display == is_border_) || (is_border_ && border_colour_ != palette_[0])) { flush_output(); is_border_ = !is_pixel_display; border_colour_ = palette_[0]; } if(is_pixel_display) { if(!pixels_) { uint16_t *const new_pixels = reinterpret_cast(crt_.begin_data(4 * size_t(line_length_ - cycle))); if(new_pixels) { flush_output(); } pixels_ = new_pixels; } if(pixels_) { // TODO: this is obviously nonsense. Probably do a table-based // planar-to-chunky up front into 8-bit pockets, and just shift that. pixels_[0] = palette_[ ((current_bitplanes_[0]&1) << 0) | ((current_bitplanes_[1]&1) << 1) | ((current_bitplanes_[2]&1) << 2) | ((current_bitplanes_[3]&1) << 3) | ((current_bitplanes_[4]&1) << 4) ]; pixels_[1] = palette_[ ((current_bitplanes_[0]&2) >> 1) | ((current_bitplanes_[1]&2) << 0) | ((current_bitplanes_[2]&2) << 1) | ((current_bitplanes_[3]&2) << 2) | ((current_bitplanes_[4]&2) << 3) ]; pixels_[2] = palette_[ ((current_bitplanes_[0]&4) >> 2) | ((current_bitplanes_[1]&4) >> 1) | ((current_bitplanes_[2]&4) << 0) | ((current_bitplanes_[3]&4) << 1) | ((current_bitplanes_[4]&4) << 2) ]; pixels_[3] = palette_[ ((current_bitplanes_[0]&8) >> 3) | ((current_bitplanes_[1]&8) >> 2) | ((current_bitplanes_[2]&8) >> 1) | ((current_bitplanes_[3]&8) << 0) | ((current_bitplanes_[4]&8) << 1) ]; current_bitplanes_ >>= 4; pixels_ += 4; } } ++zone_duration_; // Output the rest of the line. TODO: optimise border area. if(cycle == line_length_ - 1) { flush_output(); } } } #undef LINK } void Chipset::flush_output() { if(!zone_duration_) return; if(is_border_) { uint16_t *const pixels = reinterpret_cast(crt_.begin_data(1)); if(pixels) { *pixels = border_colour_; } crt_.output_data(zone_duration_ * 4, 1); } else { crt_.output_data(zone_duration_ * 4); } zone_duration_ = 0; pixels_ = nullptr; } template bool Chipset::perform_cycle() { constexpr auto BlitterFlag = DMAMask::value; constexpr auto BitplaneFlag = DMAMask::value; constexpr auto CopperFlag = DMAMask::value; constexpr auto DiskFlag = DMAMask::value; // Update state as to whether bitplane fetching should happen now. // // TODO: figure out how the hard stops factor into this. fetch_horizontal_ |= cycle == fetch_window_[0]; fetch_horizontal_ &= cycle != fetch_window_[1]; // Top priority: bitplane collection. if((dma_control_ & BitplaneFlag) == BitplaneFlag) { // TODO: offer a cycle for bitplane collection. // Probably need to indicate odd or even? if(fetch_horizontal_ && fetch_vertical_ && bitplanes_.template advance()) { did_fetch_ = true; return false; } } if constexpr (cycle & 1) { // Odd slot use/priority: // // 1. Bitplane fetches [dealt with above]. // 2. Refresh, disk, audio, or sprites. Depending on region. // // Blitter and CPU priority is dealt with below. if constexpr (cycle >= 4 && cycle <= 6) { if((dma_control_ & DiskFlag) == DiskFlag) { if(disk_.advance()) { return false; } } } } else { // Bitplanes being dealt with, specific odd-cycle responsibility // is just possibly to pass to the Copper. // // The Blitter and CPU are dealt with outside of the odd/even test. if((dma_control_ & CopperFlag) == CopperFlag) { if(copper_.advance(uint16_t(((y_ & 0xff) << 8) | (cycle & 0xfe)))) { return false; } } else { copper_.stop(); } } // Down here: give first refusal to the Blitter, otherwise // pass on to the CPU. return (dma_control_ & BlitterFlag) != BlitterFlag || !blitter_.advance(); } template int Chipset::advance_slots(int first_slot, int last_slot) { if(first_slot == last_slot) { return -1; } #define C(x) \ case x: \ if constexpr(stop_on_cpu) {\ if(perform_cycle()) {\ return x - first_slot;\ }\ } else {\ perform_cycle(); \ } \ output(); \ if((x + 1) == last_slot) break; \ [[fallthrough]] #define C10(x) C(x); C(x+1); C(x+2); C(x+3); C(x+4); C(x+5); C(x+6); C(x+7); C(x+8); C(x+9); switch(first_slot) { C10(0); C10(10); C10(20); C10(30); C10(40); C10(50); C10(60); C10(70); C10(80); C10(90); C10(100); C10(110); C10(120); C10(130); C10(140); C10(150); C10(160); C10(170); C10(180); C10(190); C10(200); C10(210); C(220); C(221); C(222); C(223); C(224); C(225); C(226); C(227); C(228); // break; default: assert(false); } #undef C return -1; } template Chipset::Changes Chipset::run(HalfCycles length) { Changes changes; // This code uses 'pixels' as a measure, which is equivalent to one pixel clock time, // or half a cycle. auto pixels_remaining = length.as(); // Update raster position, spooling out graphics. while(pixels_remaining) { // Determine number of pixels left on this line. const int line_pixels = std::min(pixels_remaining, (line_length_ * 4) - line_cycle_); const int start_slot = line_cycle_ >> 2; const int end_slot = (line_cycle_ + line_pixels) >> 2; const int actual_slots = advance_slots(start_slot, end_slot); if(stop_on_cpu && actual_slots >= 0) { // Run until the end of the named slot. if(actual_slots) { const int actual_line_pixels = (4 - (line_cycle_ & 3)) + ((actual_slots - 1) << 2); line_cycle_ += actual_line_pixels; changes.duration += HalfCycles(actual_line_pixels); } // Just ensure an exit. pixels_remaining = 0; } else { line_cycle_ += line_pixels; changes.duration += HalfCycles(line_pixels); pixels_remaining -= line_pixels; } // Advance intraline counter and pcoossibly ripple upwards into // lines and fields. if(line_cycle_ == (line_length_ * 4)) { ++changes.hsyncs; line_cycle_ = 0; ++y_; fetch_vertical_ |= y_ == display_window_start_[1]; fetch_vertical_ &= y_ != display_window_stop_[1]; if(did_fetch_) { // TODO: find out when modulos are actually applied, since // they're dynamically programmable. bitplanes_.do_end_of_line(); did_fetch_ = false; } if(y_ == frame_height_) { ++changes.vsyncs; interrupt_requests_ |= InterruptMask::value; update_interrupts(); y_ = 0; // TODO: the manual is vague on when this happens. Try to find out. copper_.reload<0>(); } } assert(line_cycle_ < line_length_ * 4); } changes.interrupt_level = interrupt_level_; return changes; } void Chipset::post_bitplanes(const BitplaneData &data) { // TODO: should probably store for potential delay? current_bitplanes_ = data; // current_bitplanes_[0] = 0xaaaa; // current_bitplanes_[1] = 0x3333; // current_bitplanes_[2] = 0x4444; // current_bitplanes_[3] = 0x1111; // Convert to future pixels. // const int odd_offset = line_cycle_ + odd_delay_; // const int even_offset = line_cycle_ + odd_delay_; // for(int x = 0; x < 16; x++) { // const uint16_t mask = uint16_t(1 << x); // even_playfield_[x + even_offset] = uint8_t( // ((data[0] & mask) | ((data[2] & mask) << 1) | ((data[4] & mask) << 2)) >> x // ); // odd_playfield_[x + odd_offset] = uint8_t( // ((data[1] & mask) | ((data[3] & mask) << 1) | ((data[5] & mask) << 2)) >> x // ); // } } void Chipset::update_interrupts() { interrupt_level_ = 0; const uint16_t enabled_requests = interrupt_enable_ & interrupt_requests_ & 0x3fff; if(enabled_requests && (interrupt_enable_ & 0x4000)) { if(enabled_requests & InterruptMask::value) { interrupt_level_ = 6; } else if(enabled_requests & InterruptMask::value) { interrupt_level_ = 5; } else if(enabled_requests & InterruptMask::value) { interrupt_level_ = 4; } else if(enabled_requests & InterruptMask::value) { interrupt_level_ = 3; } else if(enabled_requests & InterruptMask::value) { interrupt_level_ = 2; } else if(enabled_requests & InterruptMask::value) { interrupt_level_ = 1; } } } void Chipset::perform(const CPU::MC68000::Microcycle &cycle) { using Microcycle = CPU::MC68000::Microcycle; #define RW(address) address | ((cycle.operation & Microcycle::Read) << 12) #define Read(address) address | (Microcycle::Read << 12) #define Write(address) address #define ApplySetClear(target) { \ const uint16_t value = cycle.value16(); \ if(value & 0x8000) { \ target |= (value & 0x7fff); \ } else { \ target &= ~(value & 0x7fff); \ } \ } const uint32_t register_address = *cycle.address & 0x1fe; switch(RW(register_address)) { default: LOG("Unimplemented chipset " << (cycle.operation & Microcycle::Read ? "read" : "write") << " " << PADHEX(6) << *cycle.address); assert(false); break; // Raster position. case Read(0x004): { const uint16_t position = uint16_t(y_ >> 8); LOG("Read vertical position high " << PADHEX(4) << position); cycle.set_value16(position); } break; case Read(0x006): { // const uint16_t position = uint16_t(((line_cycle_ << 6) & 0xff00) | (y_ & 0x00ff)); const uint16_t position = 0xd1ef; // TODO: !!! LOG("Read position low " << PADHEX(4) << position); cycle.set_value16(position); } break; case Write(0x02a): LOG("TODO: write vertical position high " << PADHEX(4) << cycle.value16()); break; case Write(0x02c): LOG("TODO: write vertical position low " << PADHEX(4) << cycle.value16()); break; // Joystick/mouse input. case Read(0x00a): case Read(0x00c): LOG("TODO: Joystick/mouse position " << PADHEX(4) << *cycle.address); cycle.set_value16(0x8080); break; case Write(0x034): LOG("TODO: pot port start"); break; case Read(0x016): LOG("TODO: pot port read"); cycle.set_value16(0xff00); break; // Disk DMA. case Write(0x020): disk_.set_pointer<0, 16>(cycle.value16()); break; case Write(0x022): disk_.set_pointer<0, 0>(cycle.value16()); break; case Write(0x024): disk_.set_length(cycle.value16()); break; case Write(0x026): LOG("TODO: disk DMA; " << PADHEX(4) << cycle.value16() << " to " << *cycle.address); break; // Refresh. case Write(0x028): LOG("TODO (maybe): refresh; " << PADHEX(4) << cycle.value16() << " to " << *cycle.address); break; // Serial port. case Read(0x018): LOG("TODO: serial data and status"); cycle.set_value16(0x3000); // i.e. transmit buffer empty. break; case Write(0x030): LOG("TODO: serial data: " << PADHEX(4) << cycle.value16()); break; case Write(0x032): LOG("TODO: serial control: " << PADHEX(4) << cycle.value16()); serial_.set_control(cycle.value16()); break; // DMA management. case Read(0x002): LOG("DMA control and status read"); cycle.set_value16(dma_control_ | blitter_.get_status()); break; case Write(0x096): ApplySetClear(dma_control_); LOG("DMA control modified by " << PADHEX(4) << cycle.value16() << "; is now " << std::bitset<16>{dma_control_}); break; // Interrupts. case Write(0x09a): ApplySetClear(interrupt_enable_); update_interrupts(); LOG("Interrupt enable mask modified by " << PADHEX(4) << cycle.value16() << "; is now " << std::bitset<16>{interrupt_enable_}); break; case Read(0x01c): cycle.set_value16(interrupt_enable_); LOG("Interrupt enable mask read: " << PADHEX(4) << interrupt_enable_); break; case Write(0x09c): ApplySetClear(interrupt_requests_); update_interrupts(); LOG("Interrupt request modified by " << PADHEX(4) << cycle.value16() << "; is now " << std::bitset<16>{interrupt_requests_}); break; case Read(0x01e): cycle.set_value16(interrupt_requests_); LOG("Interrupt requests read: " << PADHEX(4) << interrupt_requests_); break; // Display management. case Write(0x08e): { const uint16_t value = cycle.value16(); display_window_start_[0] = value & 0xff; display_window_start_[1] = value >> 8; LOG("Display window start set to " << std::dec << display_window_start_[0] << ", " << display_window_start_[1]); } break; case Write(0x090): { const uint16_t value = cycle.value16(); display_window_stop_[0] = 0x100 | (value & 0xff); display_window_stop_[1] = value >> 8; display_window_stop_[1] |= ((value >> 7) & 0x100) ^ 0x100; LOG("Display window stop set to " << std::dec << display_window_stop_[0] << ", " << display_window_stop_[1]); } break; case Write(0x092): fetch_window_[0] = uint16_t((cycle.value16() & 0xfc) << 1); LOG("Fetch window start set to " << std::dec << fetch_window_[0]); break; case Write(0x094): fetch_window_[1] = uint16_t((cycle.value16() & 0xfc) << 1); LOG("Fetch window stop set to " << std::dec << fetch_window_[1]); break; // Bitplanes. case Write(0x0e0): bitplanes_.set_pointer<0, 16>(cycle.value16()); break; case Write(0x0e2): bitplanes_.set_pointer<0, 0>(cycle.value16()); break; case Write(0x0e4): bitplanes_.set_pointer<1, 16>(cycle.value16()); break; case Write(0x0e6): bitplanes_.set_pointer<1, 0>(cycle.value16()); break; case Write(0x0e8): bitplanes_.set_pointer<2, 16>(cycle.value16()); break; case Write(0x0ea): bitplanes_.set_pointer<2, 0>(cycle.value16()); break; case Write(0x0ec): bitplanes_.set_pointer<3, 16>(cycle.value16()); break; case Write(0x0ee): bitplanes_.set_pointer<3, 0>(cycle.value16()); break; case Write(0x0f0): bitplanes_.set_pointer<4, 16>(cycle.value16()); break; case Write(0x0f2): bitplanes_.set_pointer<4, 0>(cycle.value16()); break; case Write(0x0f4): bitplanes_.set_pointer<5, 16>(cycle.value16()); break; case Write(0x0f6): bitplanes_.set_pointer<5, 0>(cycle.value16()); break; case Write(0x102): { const uint8_t delay = cycle.value8_low(); odd_delay_ = delay & 0x0f; even_delay_ = delay >> 4; } break; case Write(0x100): bitplanes_.set_control(cycle.value16()); break; case Write(0x104): case Write(0x106): LOG("TODO: Bitplane control; " << PADHEX(4) << cycle.value16() << " to " << *cycle.address); break; case Write(0x108): case Write(0x10a): LOG("TODO: Bitplane modulo; " << PADHEX(4) << cycle.value16() << " to " << *cycle.address); break; case Write(0x110): case Write(0x112): case Write(0x114): case Write(0x116): case Write(0x118): case Write(0x11a): LOG("TODO: Bitplane data; " << PADHEX(4) << cycle.value16() << " to " << *cycle.address); break; case Read(0x110): case Read(0x112): case Read(0x114): case Read(0x116): case Read(0x118): case Read(0x11a): cycle.set_value16(0xffff); LOG("Invalid read at " << PADHEX(6) << *cycle.address); break; // Blitter. case Write(0x040): blitter_.set_control(0, cycle.value16()); break; case Write(0x042): blitter_.set_control(1, cycle.value16()); break; case Write(0x044): blitter_.set_first_word_mask(cycle.value16()); break; case Write(0x046): blitter_.set_last_word_mask(cycle.value16()); break; case Write(0x048): blitter_.set_pointer<2, 16>(cycle.value16()); break; case Write(0x04a): blitter_.set_pointer<2, 0>(cycle.value16()); break; case Write(0x04c): blitter_.set_pointer<1, 16>(cycle.value16()); break; case Write(0x04e): blitter_.set_pointer<1, 0>(cycle.value16()); break; case Write(0x050): blitter_.set_pointer<0, 16>(cycle.value16()); break; case Write(0x052): blitter_.set_pointer<0, 0>(cycle.value16()); break; case Write(0x054): blitter_.set_pointer<3, 16>(cycle.value16()); break; case Write(0x056): blitter_.set_pointer<3, 0>(cycle.value16()); break; case Write(0x058): blitter_.set_size(cycle.value16()); break; case Write(0x05a): blitter_.set_minterms(cycle.value16()); break; case Write(0x05c): blitter_.set_vertical_size(cycle.value16()); break; case Write(0x05e): blitter_.set_horizontal_size(cycle.value16()); break; case Write(0x060): blitter_.set_modulo(2, cycle.value16()); break; case Write(0x062): blitter_.set_modulo(1, cycle.value16()); break; case Write(0x064): blitter_.set_modulo(0, cycle.value16()); break; case Write(0x066): blitter_.set_modulo(3, cycle.value16()); break; case Write(0x070): blitter_.set_data(2, cycle.value16()); break; case Write(0x072): blitter_.set_data(1, cycle.value16()); break; case Write(0x074): blitter_.set_data(0, cycle.value16()); break; // Paula. case Write(0x09e): case Write(0x0a0): case Write(0x0a2): case Write(0x0a4): case Write(0x0a6): case Write(0x0a8): case Write(0x0aa): case Write(0x0b0): case Write(0x0b2): case Write(0x0b4): case Write(0x0b6): case Write(0x0b8): case Write(0x0ba): case Write(0x0c0): case Write(0x0c2): case Write(0x0c4): case Write(0x0c6): case Write(0x0c8): case Write(0x0ca): case Write(0x0d0): case Write(0x0d2): case Write(0x0d4): case Write(0x0d6): case Write(0x0d8): case Write(0x0da): LOG("TODO: Paula write " << PADHEX(2) << (*cycle.address & 0xff) << " " << PADHEX(4) << cycle.value16()); break; // Copper. case Write(0x02e): LOG("Coprocessor control " << PADHEX(4) << cycle.value16()); copper_.set_control(cycle.value16()); break; case Write(0x080): LOG("Coprocessor first location register high " << PADHEX(4) << cycle.value16()); copper_.set_pointer<0, 16>(cycle.value16()); break; case Write(0x082): LOG("Coprocessor first location register low " << PADHEX(4) << cycle.value16()); copper_.set_pointer<0, 0>(cycle.value16()); break; case Write(0x084): LOG("Coprocessor second location register high " << PADHEX(4) << cycle.value16()); copper_.set_pointer<1, 16>(cycle.value16()); break; case Write(0x086): LOG("Coprocessor second location register low " << PADHEX(4) << cycle.value16()); copper_.set_pointer<1, 0>(cycle.value16()); break; case Write(0x088): case Read(0x088): LOG("Coprocessor restart at first location"); copper_.reload<0>(); break; case Write(0x08a): case Read(0x08a): LOG("Coprocessor restart at second location"); copper_.reload<1>(); break; case Write(0x08c): LOG("TODO: coprocessor instruction fetch identity " << PADHEX(4) << cycle.value16()); break; // Sprites. #define Sprite(index, pointer, position) \ case Write(pointer + 0): sprites_[index].set_pointer(16, cycle.value16()); break; \ case Write(pointer + 2): sprites_[index].set_pointer(0, cycle.value16()); break; \ case Write(position + 0): sprites_[index].set_start_position(cycle.value16()); break; \ case Write(position + 2): sprites_[index].set_stop_and_control(cycle.value16()); break; \ case Write(position + 4): sprites_[index].set_image_data(0, cycle.value16()); break; \ case Write(position + 6): sprites_[index].set_image_data(1, cycle.value16()); break; Sprite(0, 0x120, 0x140); Sprite(1, 0x124, 0x148); Sprite(2, 0x128, 0x150); Sprite(3, 0x12c, 0x158); Sprite(4, 0x130, 0x160); Sprite(5, 0x134, 0x168); Sprite(6, 0x138, 0x170); Sprite(7, 0x13c, 0x178); #undef Sprite // Colour palette. case Write(0x180): case Write(0x182): case Write(0x184): case Write(0x186): case Write(0x188): case Write(0x18a): case Write(0x18c): case Write(0x18e): case Write(0x190): case Write(0x192): case Write(0x194): case Write(0x196): case Write(0x198): case Write(0x19a): case Write(0x19c): case Write(0x19e): case Write(0x1a0): case Write(0x1a2): case Write(0x1a4): case Write(0x1a6): case Write(0x1a8): case Write(0x1aa): case Write(0x1ac): case Write(0x1ae): case Write(0x1b0): case Write(0x1b2): case Write(0x1b4): case Write(0x1b6): case Write(0x1b8): case Write(0x1ba): case Write(0x1bc): case Write(0x1be): { LOG("Colour palette; " << PADHEX(4) << cycle.value16() << " to " << *cycle.address); // Store once in regular, linear order. const auto entry_address = (register_address - 0x180) >> 1; uint8_t *const entry = reinterpret_cast(&palette_[entry_address]); entry[0] = cycle.value8_high(); entry[1] = cycle.value8_low(); // Also store in bit-swizzled order. In this array, // instead of being indexed as [b4 b3 b2 b1 b0], index // as [b3 b1 b4 b2 b0]. This is related to the dual/single-playfield // decision being made relatively late in the planar -> chunky // conversion performed by this implementation. const auto swizzled_address = (entry_address&0x01) | ((entry_address&0x02) << 2) | ((entry_address&0x04) >> 1) | ((entry_address&0x08) << 1) | ((entry_address&0x10) >> 2); uint8_t *const swizzled_entry = reinterpret_cast(&swizzled_palette_[swizzled_address]); swizzled_entry[0] = cycle.value8_high(); swizzled_entry[1] = cycle.value8_low(); } break; } #undef ApplySetClear #undef Write #undef Read #undef RW } // MARK: - Bitplanes. template bool Chipset::Bitplanes::advance() { // Offset is preincremented in order to simplify the exit // pathways below. As a result all in-switch offsets are // off by 1. This is dealt with in the macro. ++collection_offset_; // TODO: possibly dispatch a BitplaneData. // The chipset has responsibility for applying a delay, // and the pixel-level start/stop boundaries. #define BIND_CYCLE(offset, plane) \ case (offset + 1)&7: \ if(plane_count_ > plane) { \ next[plane] = ram_[pointer_[plane] & ram_mask_]; \ ++pointer_[plane]; \ if constexpr (!plane) { \ chipset_.post_bitplanes(next); \ } \ return true; \ } \ return false; if(is_high_res_) { // TODO: I'm unclear whether this is correct, or merely // an artefact of the way the Hardware Reference Manual // depicts per-line DMA responsibilities. if(collection_offset_ < 4) { return false; } switch(collection_offset_&7) { default: return false; BIND_CYCLE(0, 3); BIND_CYCLE(1, 1); BIND_CYCLE(2, 2); BIND_CYCLE(3, 0); BIND_CYCLE(4, 3); BIND_CYCLE(5, 1); BIND_CYCLE(6, 2); BIND_CYCLE(7, 0); } } else { switch(collection_offset_&7) { default: return false; BIND_CYCLE(1, 3); BIND_CYCLE(2, 5); BIND_CYCLE(3, 1); BIND_CYCLE(5, 2); BIND_CYCLE(6, 4); BIND_CYCLE(7, 0); } } return false; } void Chipset::Bitplanes::do_end_of_line() { // TODO: apply modulos. collection_offset_ = 0; } void Chipset::Bitplanes::set_control(uint16_t control) { is_high_res_ = control & 0x8000; plane_count_ = (control >> 12) & 7; // TODO: who really has responsibility for clearing the other // bit plane fields? std::fill(next.begin() + plane_count_, next.end(), 0); if(plane_count_ == 7) { plane_count_ = 4; } } // MARK: - Sprites. void Chipset::Sprite::set_pointer(int shift, uint16_t value) { LOG("Sprite pointer with shift " << std::dec << shift << " to " << PADHEX(4) << value); } void Chipset::Sprite::set_start_position(uint16_t value) { LOG("Sprite start position " << PADHEX(4) << value); } void Chipset::Sprite::set_stop_and_control(uint16_t value) { LOG("Sprite stop and control " << PADHEX(4) << value); } void Chipset::Sprite::set_image_data(int slot, uint16_t value) { LOG("Sprite image data " << slot << " to " << PADHEX(4) << value); } // MARK: - Disk. bool Chipset::DiskDMA::advance() { if(!dma_enable_) return false; if(!write_) { // TODO: run an actual PLL, collect actual disk data. if(length_) { ram_[pointer_[0] & ram_mask_] = 0xffff; ++pointer_[0]; --length_; if(!length_) { chipset_.posit_interrupt(InterruptFlag::DiskBlock); } return true; } } return false; } // MARK: - CRT connection. void Chipset::set_scan_target(Outputs::Display::ScanTarget *scan_target) { crt_.set_scan_target(scan_target); } Outputs::Display::ScanStatus Chipset::get_scaled_scan_status() const { return crt_.get_scaled_scan_status(); } void Chipset::set_display_type(Outputs::Display::DisplayType type) { crt_.set_display_type(type); } Outputs::Display::DisplayType Chipset::get_display_type() const { return crt_.get_display_type(); }