// // Electron.cpp // Clock Signal // // Created by Thomas Harte on 03/01/2016. // Copyright © 2016 Thomas Harte. All rights reserved. // #include "Electron.hpp" #include using namespace Electron; static const int cycles_per_line = 128; static const int cycles_per_frame = 312*cycles_per_line; static const int crt_cycles_multiplier = 8; static const int crt_cycles_per_line = crt_cycles_multiplier * cycles_per_line; Machine::Machine() : _interruptControl(0), _frameCycles(0), _outputPosition(0), _currentOutputLine(0) { memset(_keyStates, 0, sizeof(_keyStates)); memset(_palette, 0xf, sizeof(_palette)); _crt = new Outputs::CRT(crt_cycles_per_line, 312, 1, 1); _interruptStatus = 0x02; setup6502(); } Machine::~Machine() { } unsigned int Machine::perform_bus_operation(CPU6502::BusOperation operation, uint16_t address, uint8_t *value) { unsigned int cycles = 1; if(address < 0x8000) { if(isReadOperation(operation)) { *value = _ram[address]; } else { // TODO: range check on address; a lot of the time the machine will be running code outside of // the screen area, meaning that no update is required. update_display(); _ram[address] = *value; } // TODO: RAM timing for Modes 0–3 cycles += (_frameCycles&1)^1; } else { if(address >= 0xc000) { if((address & 0xff00) == 0xfe00) { // printf("%c: %02x: ", isReadOperation(operation) ? 'r' : 'w', *value); switch(address&0xf) { case 0x0: if(isReadOperation(operation)) { *value = _interruptStatus; _interruptStatus &= ~0x02; } else { _interruptControl = *value; evaluate_interrupts(); } break; case 0x1: break; case 0x2: _startScreenAddress = (_startScreenAddress & 0xfe00) | (uint16_t)(((*value) & 0xe0) << 1); break; case 0x3: _startScreenAddress = (_startScreenAddress & 0x01ff) | (uint16_t)(((*value) & 0x3f) << 9); break; case 0x4: printf("Cassette\n"); break; case 0x5: if(!isReadOperation(operation)) { const uint8_t interruptDisable = (*value)&0xf0; if( interruptDisable ) { if( interruptDisable&0x10 ) _interruptStatus &= ~InterruptDisplayEnd; if( interruptDisable&0x20 ) _interruptStatus &= ~InterruptRealTimeClock; if( interruptDisable&0x40 ) _interruptStatus &= ~InterruptHighToneDetect; evaluate_interrupts(); // TODO: NMI (?) } // else { uint8_t nextROM = (*value)&0xf; // if(nextROM&0x08) // { // _activeRom = (Electron::ROMSlot)(nextROM&0x0e); // printf("%d -> Paged %d\n", nextROM, _activeRom); // } if(((_activeRom&12) != 8) || (nextROM&8)) { _activeRom = (Electron::ROMSlot)nextROM; } // else // { // printf("Ignored!"); // } // printf("%d -> Paged %d\n", nextROM, _activeRom); } } break; case 0x6: printf("Counter\n"); break; case 0x7: if(!isReadOperation(operation)) { _screenMode = ((*value) >> 3)&7; if(_screenMode == 7) _screenMode = 4; switch(_screenMode) { case 0: case 1: case 2: _screenModeBaseAddress = 0x3000; break; case 3: _screenModeBaseAddress = 0x4000; break; case 4: case 5: _screenModeBaseAddress = 0x5800; break; case 6: _screenModeBaseAddress = 0x6000; break; } printf("Misc. control\n"); } break; default: { if(!isReadOperation(operation)) { update_display(); static const int registers[4][4] = { {10, 8, 2, 0}, {14, 12, 6, 4}, {15, 13, 7, 5}, {11, 9, 3, 1}, }; const int index = (address >> 1)&3; const uint8_t colour = ~(*value); if(address&1) { _palette[registers[index][0]] = (_palette[registers[index][0]]&3) | ((colour >> 1)&4); _palette[registers[index][1]] = (_palette[registers[index][1]]&3) | ((colour >> 0)&4); _palette[registers[index][2]] = (_palette[registers[index][2]]&3) | ((colour << 1)&4); _palette[registers[index][3]] = (_palette[registers[index][3]]&3) | ((colour << 2)&4); _palette[registers[index][2]] = (_palette[registers[index][2]]&5) | ((colour >> 4)&2); _palette[registers[index][3]] = (_palette[registers[index][3]]&5) | ((colour >> 3)&2); } else { _palette[registers[index][0]] = (_palette[registers[index][0]]&6) | ((colour >> 7)&1); _palette[registers[index][1]] = (_palette[registers[index][1]]&6) | ((colour >> 6)&1); _palette[registers[index][2]] = (_palette[registers[index][2]]&6) | ((colour >> 5)&1); _palette[registers[index][3]] = (_palette[registers[index][3]]&6) | ((colour >> 4)&1); _palette[registers[index][0]] = (_palette[registers[index][0]]&5) | ((colour >> 2)&2); _palette[registers[index][1]] = (_palette[registers[index][1]]&5) | ((colour >> 1)&2); } } } break; } } else { if(isReadOperation(operation)) *value = _os[address & 16383]; } } else { if(isReadOperation(operation)) { switch(_activeRom) { case ROMSlotBASIC: case ROMSlotBASIC+1: *value = _basic[address & 16383]; break; case ROMSlotKeyboard: case ROMSlotKeyboard+1: *value = 0xf0; for(int address_line = 0; address_line < 14; address_line++) { if(!(address&(1 << address_line))) *value |= _keyStates[address_line]; } break; default: *value = 0xff; break; } } } } // if(operation == CPU6502::BusOperation::ReadOpcode) // { // printf("%04x: %02x (%d)\n", address, *value, _frameCycles); // } _frameCycles += cycles; if(_frameCycles == cycles_per_frame) { update_display(); _frameCycles = 0; _outputPosition = 0; _currentOutputLine = 0; } if(_frameCycles == 128*128) signal_interrupt(InterruptRealTimeClock); if(_frameCycles == 284*128) signal_interrupt(InterruptDisplayEnd); return cycles; } void Machine::set_rom(ROMSlot slot, size_t length, const uint8_t *data) { uint8_t *target = nullptr; switch(slot) { case ROMSlotBASIC: target = _basic; break; case ROMSlotOS: target = _os; break; default: return; } memcpy(target, data, std::min((size_t)16384, length)); } inline void Machine::signal_interrupt(Electron::Interrupt interrupt) { _interruptStatus |= interrupt; evaluate_interrupts(); } inline void Machine::evaluate_interrupts() { if(_interruptStatus & _interruptControl) { _interruptStatus |= 1; } else { _interruptStatus &= ~1; } set_irq_line(_interruptStatus & 1); } inline void Machine::update_display() { const int lines_of_hsync = 3; const int end_of_hsync = lines_of_hsync * cycles_per_line; const int first_graphics_line = 28; if(_frameCycles >= end_of_hsync) { // assert sync for the first three lines of the display, with a break at the end for horizontal alignment if(_outputPosition < end_of_hsync) { for(int c = 0; c < lines_of_hsync; c++) { _crt->output_sync(119 * crt_cycles_multiplier); _crt->output_blank(9 * crt_cycles_multiplier); } _outputPosition = end_of_hsync; } while(_outputPosition >= end_of_hsync && _outputPosition < _frameCycles) { const int current_line = _outputPosition >> 7; const int line_position = _outputPosition & 127; // all lines then start with 9 cycles of sync if(!line_position) { _crt->output_sync(9 * crt_cycles_multiplier); _outputPosition += 9; } else { bool isBlankLine = ((_screenMode == 3) || (_screenMode == 6)) ? ((current_line < first_graphics_line || current_line >= first_graphics_line+248) || (((current_line - first_graphics_line)%10) > 7)) : ((current_line < first_graphics_line || current_line >= first_graphics_line+256)); if(isBlankLine) { if(line_position == 9) { _crt->output_blank(119 * crt_cycles_multiplier); _outputPosition += 119; } } else { // there are then 15 cycles of blank, 80 cycles of pixels, and 24 further cycles of blank if(line_position == 9) { _crt->output_blank(15 * crt_cycles_multiplier); _outputPosition += 15; _crt->allocate_write_area(80 * crt_cycles_multiplier); _currentLine = (uint8_t *)_crt->get_write_target_for_buffer(0); if(current_line == first_graphics_line) _startLineAddress = _startScreenAddress; _currentScreenAddress = _startLineAddress; } if(line_position >= 24 && line_position < 104) { if(_currentLine && ((_screenMode < 4) || !(line_position&1))) { if(_currentScreenAddress&32768) { _currentScreenAddress = _screenModeBaseAddress + (_currentScreenAddress&32767); } uint8_t pixels = _ram[_currentScreenAddress]; _currentScreenAddress = _currentScreenAddress+8; int output_ptr = (line_position - 24) << 3; switch(_screenMode) { case 0: case 3: for(int c = 0; c < 8; c++) { uint8_t colour = (pixels&0x80) >> 4; _currentLine[output_ptr + c] = _palette[colour]; pixels <<= 1; } break; case 1: for(int c = 0; c < 8; c += 2) { uint8_t colour = ((pixels&0x80) >> 4) | ((pixels&0x08) >> 2); _currentLine[output_ptr + c + 0] = _currentLine[output_ptr + c + 1] = _palette[colour]; pixels <<= 1; } break; case 2: for(int c = 0; c < 8; c += 4) { uint8_t colour = ((pixels&0x80) >> 4) | ((pixels&0x20) >> 3) | ((pixels&0x08) >> 2) | ((pixels&0x02) >> 1); _currentLine[output_ptr + c + 0] = _currentLine[output_ptr + c + 1] = _currentLine[output_ptr + c + 2] = _currentLine[output_ptr + c + 3] = _palette[colour]; pixels <<= 1; } break; case 5: for(int c = 0; c < 16; c += 4) { uint8_t colour = ((pixels&0x80) >> 4) | ((pixels&0x08) >> 2); _currentLine[output_ptr + c + 0] = _currentLine[output_ptr + c + 1] = _currentLine[output_ptr + c + 2] = _currentLine[output_ptr + c + 3] = _palette[colour]; pixels <<= 1; } break; default: case 4: case 6: for(int c = 0; c < 16; c += 2) { uint8_t colour = (pixels&0x80) >> 4; _currentLine[output_ptr + c] = _currentLine[output_ptr + c + 1] = _palette[colour]; pixels <<= 1; } break; } } _outputPosition++; } if(line_position == 104) { _currentOutputLine++; if(!(_currentOutputLine&7)) { _startLineAddress += ((_screenMode < 4) ? 80 : 40)*8 - 7; } else _startLineAddress++; _currentLine = nullptr; _crt->output_data(80 * crt_cycles_multiplier); _crt->output_blank(24 * crt_cycles_multiplier); _outputPosition += 24; } } } } } } const char *Machine::get_signal_decoder() { return "vec4 sample(vec2 coordinate)\n" "{\n" "float texValue = texture(texID, srcCoordinatesVarying).r;\n" "return vec4( step(4.0/256.0, mod(texValue, 8.0/256.0)), step(2.0/256.0, mod(texValue, 4.0/256.0)), step(1.0/256.0, mod(texValue, 2.0/256.0)), 1.0);\n" "}"; } void Machine::set_key_state(Key key, bool isPressed) { if(key == KeyBreak) { set_reset_line(isPressed); } else { if(isPressed) _keyStates[key >> 4] |= key&0xf; else _keyStates[key >> 4] &= ~(key&0xf); } }