// // PerformImplementation.hpp // Clock Signal // // Created by Thomas Harte on 28/04/2022. // Copyright © 2022 Thomas Harte. All rights reserved. // #ifndef InstructionSets_M68k_PerformImplementation_h #define InstructionSets_M68k_PerformImplementation_h #include #include namespace InstructionSet { namespace M68k { #define u_extend16(x) uint32_t(int16_t(x)) #define u_extend8(x) uint32_t(int8_t(x)) #define s_extend16(x) int32_t(int16_t(x)) #define s_extend8(x) int32_t(int8_t(x)) #define convert_to_bit_count_16(x) \ x = ((x & 0xaaaa) >> 1) + (x & 0x5555); \ x = ((x & 0xcccc) >> 2) + (x & 0x3333); \ x = ((x & 0xf0f0) >> 4) + (x & 0x0f0f); \ x = ((x & 0xff00) >> 8) + (x & 0x00ff); template < Model model, typename FlowController, Operation operation = Operation::Undefined > void perform(Preinstruction instruction, CPU::SlicedInt32 &src, CPU::SlicedInt32 &dest, Status &status, FlowController &flow_controller) { #define sub_overflow() ((result ^ destination) & (destination ^ source)) #define add_overflow() ((result ^ destination) & ~(destination ^ source)) switch((operation != Operation::Undefined) ? operation : instruction.operation) { /* ABCD adds the lowest bytes from the source and destination using BCD arithmetic, obeying the extend flag. */ case Operation::ABCD: { // Pull out the two halves, for simplicity. const uint8_t source = src.b; const uint8_t destination = dest.b; // Perform the BCD add by evaluating the two nibbles separately. const int unadjusted_result = destination + source + (status.extend_flag_ ? 1 : 0); int result = (destination & 0xf) + (source & 0xf) + (status.extend_flag_ ? 1 : 0); if(result > 0x09) result += 0x06; result += (destination & 0xf0) + (source & 0xf0); if(result > 0x99) result += 0x60; // Set all flags essentially as if this were normal addition. status.zero_result_ |= result & 0xff; status.extend_flag_ = status.carry_flag_ = uint_fast32_t(result & ~0xff); status.negative_flag_ = result & 0x80; status.overflow_flag_ = ~unadjusted_result & result & 0x80; // Store the result. dest.b = uint8_t(result); } break; #define addop(a, b, x) a + b + (x ? 1 : 0) #define subop(a, b, x) a - b - (x ? 1 : 0) #define z_set(a, b) a = b #define z_or(a, b) a |= b #define addsubb(a, b, op, overflow, x, zero_op) \ const int source = a; \ const int destination = b; \ const auto result = op(destination, source, x); \ \ b = uint8_t(result); \ zero_op(status.zero_result_, b); \ status.extend_flag_ = status.carry_flag_ = uint_fast32_t(result & ~0xff); \ status.negative_flag_ = result & 0x80; \ status.overflow_flag_ = overflow() & 0x80; #define addsubw(a, b, op, overflow, x, zero_op) \ const int source = a; \ const int destination = b; \ const auto result = op(destination, source, x); \ \ b = uint16_t(result); \ zero_op(status.zero_result_, b); \ status.extend_flag_ = status.carry_flag_ = uint_fast32_t(result & ~0xffff); \ status.negative_flag_ = result & 0x8000; \ status.overflow_flag_ = overflow() & 0x8000; #define addsubl(a, b, op, overflow, x, zero_op) \ const uint64_t source = a; \ const uint64_t destination = b; \ const auto result = op(destination, source, x); \ \ b = uint32_t(result); \ zero_op(status.zero_result_, b); \ status.extend_flag_ = status.carry_flag_ = uint_fast32_t(result >> 32); \ status.negative_flag_ = result & 0x80000000; \ status.overflow_flag_ = overflow() & 0x80000000; #define addb(a, b, x, z) addsubb(a, b, addop, add_overflow, x, z) #define subb(a, b, x, z) addsubb(a, b, subop, sub_overflow, x, z) #define addw(a, b, x, z) addsubw(a, b, addop, add_overflow, x, z) #define subw(a, b, x, z) addsubw(a, b, subop, sub_overflow, x, z) #define addl(a, b, x, z) addsubl(a, b, addop, add_overflow, x, z) #define subl(a, b, x, z) addsubl(a, b, subop, sub_overflow, x, z) #define no_extend(op, a, b) op(a, b, 0, z_set) #define extend(op, a, b) op(a, b, status.extend_flag_, z_or) // ADD and ADDA add two quantities, the latter sign extending and without setting any flags; // ADDQ and SUBQ act as ADD and SUB, but taking the second argument from the instruction code. case Operation::ADDb: { no_extend( addb, src.b, dest.b); } break; case Operation::ADDXb: { extend( addb, src.b, dest.b); } break; case Operation::ADDw: { no_extend( addw, src.w, dest.w); } break; case Operation::ADDXw: { extend( addw, src.w, dest.w); } break; case Operation::ADDl: { no_extend( addl, src.l, dest.l); } break; case Operation::ADDXl: { extend( addl, src.l, dest.l); } break; case Operation::SUBb: { no_extend( subb, src.b, dest.b); } break; case Operation::SUBXb: { extend( subb, src.b, dest.b); } break; case Operation::SUBw: { no_extend( subw, src.w, dest.w); } break; case Operation::SUBXw: { extend( subw, src.w, dest.w); } break; case Operation::SUBl: { no_extend( subl, src.l, dest.l); } break; case Operation::SUBXl: { extend( subl, src.l, dest.l); } break; #undef addl #undef addw #undef addb #undef subl #undef subw #undef subb #undef addsubl #undef addsubw #undef addsubb #undef z_set #undef z_or #undef no_extend #undef extend #undef addop #undef subop case Operation::ADDAw: dest.l += u_extend16(src.w); break; case Operation::ADDAl: dest.l += src.l; break; case Operation::SUBAw: dest.l -= u_extend16(src.w); break; case Operation::SUBAl: dest.l -= src.l; break; // BTST/BCLR/etc: modulo for the mask depends on whether memory or a data register is the target. case Operation::BTST: { const uint32_t mask = (instruction.mode<1>() == AddressingMode::DataRegisterDirect) ? 31 : 7; status.zero_result_ = dest.l & (1 << (src.l & mask)); } break; case Operation::BCLR: { const uint32_t mask = (instruction.mode<1>() == AddressingMode::DataRegisterDirect) ? 31 : 7; status.zero_result_ = dest.l & (1 << (src.l & mask)); dest.l &= ~(1 << (src.l & mask)); // // Clearing in the top word requires an extra four cycles. // set_next_microcycle_length(HalfCycles(8 + ((src.l & 31) / 16) * 4)); } break; case Operation::BCHG: { const uint32_t mask = (instruction.mode<1>() == AddressingMode::DataRegisterDirect) ? 31 : 7; status.zero_result_ = dest.l & (1 << (src.l & mask)); dest.l ^= 1 << (src.l & mask); // set_next_microcycle_length(HalfCycles(4 + (((src.l & 31) / 16) * 4))); } break; case Operation::BSET: { const uint32_t mask = (instruction.mode<1>() == AddressingMode::DataRegisterDirect) ? 31 : 7; status.zero_result_ = dest.l & (1 << (src.l & mask)); dest.l |= 1 << (src.l & mask); // set_next_microcycle_length(HalfCycles(4 + (((src.l & 31) / 16) * 4))); } break; // Bcc: ordinarily evaluates the relevant condition and displacement size and then: // if condition is false, schedules bus operations to get past this instruction; // otherwise applies the offset and schedules bus operations to refill the prefetch queue. // // Special case: the condition code is 1, which is ordinarily false. In that case this // is the trailing step of a BSR. case Operation::Bccb: if(status.evaluate_condition(instruction.condition())) { flow_controller.add_pc(int8_t(src.b) + 2); } else { flow_controller.decline_branch(); } break; case Operation::Bccw: if(status.evaluate_condition(instruction.condition())) { flow_controller.add_pc(int16_t(src.w) + 2); } else { flow_controller.decline_branch(); } break; case Operation::Bccl: if(status.evaluate_condition(instruction.condition())) { flow_controller.add_pc(src.l + 2); } else { flow_controller.decline_branch(); } break; case Operation::BSRb: flow_controller.bsr(int8_t(src.b) + 2); break; case Operation::BSRw: flow_controller.bsr(int16_t(src.w) + 2); break; case Operation::BSRl: flow_controller.bsr(src.l + 2); break; case Operation::DBcc: // Decide what sort of DBcc this is. if(!status.evaluate_condition(instruction.condition())) { -- src.w; if(src.w == 0xffff) { // This DBcc will be ignored as the counter has underflowed. flow_controller.decline_branch(); } else { // Take the branch. flow_controller.add_pc(int16_t(dest.l) + 2); } } else { // This DBcc will be ignored as the condition is true. flow_controller.decline_branch(); } break; case Operation::Scc: src.b = status.evaluate_condition(instruction.condition()) ? 0xff : 0x00; break; /* CLRs: store 0 to the destination, set the zero flag, and clear negative, overflow and carry. */ case Operation::CLRb: dest.b = 0; status.negative_flag_ = status.overflow_flag_ = status.carry_flag_ = status.zero_result_ = 0; break; case Operation::CLRw: dest.w = 0; status.negative_flag_ = status.overflow_flag_ = status.carry_flag_ = status.zero_result_ = 0; break; case Operation::CLRl: dest.l = 0; status.negative_flag_ = status.overflow_flag_ = status.carry_flag_ = status.zero_result_ = 0; break; /* CMP.b, CMP.l and CMP.w: sets the condition flags (other than extend) based on a subtraction of the source from the destination; the result of the subtraction is not stored. */ case Operation::CMPb: { const uint8_t source = src.b; const uint8_t destination = dest.b; const int result = destination - source; status.zero_result_ = result & 0xff; status.carry_flag_ = decltype(status.carry_flag_)(result & ~0xff); status.negative_flag_ = result & 0x80; status.overflow_flag_ = sub_overflow() & 0x80; } break; case Operation::CMPw: { const uint16_t source = src.w; const uint16_t destination = dest.w; const int result = destination - source; status.zero_result_ = result & 0xffff; status.carry_flag_ = decltype(status.carry_flag_)(result & ~0xffff); status.negative_flag_ = result & 0x8000; status.overflow_flag_ = sub_overflow() & 0x8000; } break; case Operation::CMPAw: { const auto source = uint64_t(u_extend16(src.w)); const uint64_t destination = dest.l; const auto result = destination - source; status.zero_result_ = uint32_t(result); status.carry_flag_ = result >> 32; status.negative_flag_ = result & 0x80000000; status.overflow_flag_ = sub_overflow() & 0x80000000; } break; // TODO: is there any benefit to keeping both of these? case Operation::CMPAl: case Operation::CMPl: { const auto source = uint64_t(src.l); const auto destination = uint64_t(dest.l); const auto result = destination - source; status.zero_result_ = uint32_t(result); status.carry_flag_ = result >> 32; status.negative_flag_ = result & 0x80000000; status.overflow_flag_ = sub_overflow() & 0x80000000; } break; // JMP: copies EA(0) to the program counter. case Operation::JMP: flow_controller.set_pc(src.l); break; // JSR: jump to EA(0), pushing the current PC to the stack. case Operation::JSR: flow_controller.jsr(src.l); break; /* MOVE.b, MOVE.l and MOVE.w: move the least significant byte or word, or the entire long word, and set negative, zero, overflow and carry as appropriate. */ case Operation::MOVEb: status.zero_result_ = dest.b = src.b; status.negative_flag_ = status.zero_result_ & 0x80; status.overflow_flag_ = status.carry_flag_ = 0; break; case Operation::MOVEw: status.zero_result_ = dest.w = src.w; status.negative_flag_ = status.zero_result_ & 0x8000; status.overflow_flag_ = status.carry_flag_ = 0; break; case Operation::MOVEl: status.zero_result_ = dest.l = src.l; status.negative_flag_ = status.zero_result_ & 0x80000000; status.overflow_flag_ = status.carry_flag_ = 0; break; /* MOVEA.l: move the entire long word; MOVEA.w: move the least significant word and sign extend it. Neither sets any flags. */ case Operation::MOVEAw: dest.l = u_extend16(src.w); break; case Operation::MOVEAl: dest.l = src.l; break; case Operation::LEA: dest.l = src.l; break; // case Operation::PEA: // destination_bus_data_ = effective_address_[0]; // break; /* Status word moves and manipulations. */ case Operation::MOVEtoSR: status.set_status(src.w); break; case Operation::MOVEfromSR: dest.w = status.status(); break; case Operation::MOVEtoCCR: status.set_ccr(src.w); break; case Operation::EXTbtow: src.w = uint16_t(int8_t(src.b)); status.overflow_flag_ = status.carry_flag_ = 0; status.zero_result_ = src.w; status.negative_flag_ = status.zero_result_ & 0x8000; break; case Operation::EXTwtol: src.l = u_extend16(src.w); status.overflow_flag_ = status.carry_flag_ = 0; status.zero_result_ = src.l; status.negative_flag_ = status.zero_result_ & 0x80000000; break; #define and_op(a, b) a &= b #define or_op(a, b) a |= b #define eor_op(a, b) a ^= b #define apply(op, func) { \ auto sr = status.status(); \ op(sr, src.w); \ status.func(sr); \ } #define apply_op_sr(op) apply(op, set_status) #define apply_op_ccr(op) apply(op, set_ccr) case Operation::ANDItoSR: apply_op_sr(and_op); break; case Operation::EORItoSR: apply_op_sr(eor_op); break; case Operation::ORItoSR: apply_op_sr(or_op); break; case Operation::ANDItoCCR: apply_op_ccr(and_op); break; case Operation::EORItoCCR: apply_op_ccr(eor_op); break; case Operation::ORItoCCR: apply_op_ccr(or_op); break; #undef apply_op_ccr #undef apply_op_sr #undef apply #undef eor_op #undef or_op #undef and_op /* Multiplications. */ case Operation::MULU: { dest.l = dest.w * src.w; status.carry_flag_ = status.overflow_flag_ = 0; status.zero_result_ = dest.l; status.negative_flag_ = status.zero_result_ & 0x80000000; int number_of_ones = src.w; convert_to_bit_count_16(number_of_ones); // Time taken = 38 cycles + 2 cycles for every 1 in the source. flow_controller.consume_cycles(2 * number_of_ones + 34); } break; case Operation::MULS: { dest.l = u_extend16(dest.w) * u_extend16(src.w); status.carry_flag_ = status.overflow_flag_ = 0; status.zero_result_ = dest.l; status.negative_flag_ = status.zero_result_ & 0x80000000; // Find the number of 01 or 10 pairs in the 17-bit number // formed by the source value with a 0 suffix. int number_of_pairs = src.w; number_of_pairs = (number_of_pairs ^ (number_of_pairs << 1)) & 0xffff; convert_to_bit_count_16(number_of_pairs); // Time taken = 38 cycles + 2 cycles per 1 in the source. flow_controller.consume_cycles(2 * number_of_pairs + 34); } break; /* Divisions. */ #define announce_divide_by_zero() \ status.negative_flag_ = status.overflow_flag_ = 0; \ status.zero_result_ = 1; \ flow_controller.raise_exception(5); case Operation::DIVU: { status.carry_flag_ = 0; // An attempt to divide by zero schedules an exception. if(!src.w) { // Schedule a divide-by-zero exception. announce_divide_by_zero(); return; } uint32_t dividend = dest.l; uint32_t divisor = src.w; const auto quotient = dividend / divisor; // If overflow would occur, appropriate flags are set and the result is not written back. if(quotient > 65535) { status.overflow_flag_ = status.zero_result_ = status.negative_flag_ = 1; flow_controller.consume_cycles(3*2); return; } const uint16_t remainder = uint16_t(dividend % divisor); dest.l = uint32_t((remainder << 16) | uint16_t(quotient)); status.overflow_flag_ = 0; status.zero_result_ = quotient; status.negative_flag_ = status.zero_result_ & 0x8000; // Calculate cost; this is based on the flowchart in yacht.txt. // I could actually calculate the division result here, since this is // a classic divide algorithm, but would rather that errors produce // incorrect timing only, not incorrect timing plus incorrect results. int cycles_expended = 12; // Covers the nn n to get into the loop. divisor <<= 16; for(int c = 0; c < 15; ++c) { if(dividend & 0x80000000) { dividend = (dividend << 1) - divisor; cycles_expended += 4; // Easy; just the fixed nn iteration cost. } else { dividend <<= 1; // Yacht.txt, and indeed a real microprogram, would just subtract here // and test the sign of the result, but this is easier to follow: if (dividend >= divisor) { dividend -= divisor; cycles_expended += 6; // i.e. the original nn plus one further n before going down the MSB=0 route. } else { cycles_expended += 8; // The costliest path (since in real life it's a subtraction and then a step // back from there) — all costs accrue. So the fixed nn loop plus another n, // plus another one. } } } flow_controller.consume_cycles(cycles_expended); } break; case Operation::DIVS: { status.carry_flag_ = 0; // An attempt to divide by zero schedules an exception. if(!src.w) { // Schedule a divide-by-zero exception. announce_divide_by_zero() break; } const int32_t signed_dividend = int32_t(dest.l); const int32_t signed_divisor = s_extend16(src.w); const auto result_sign = ( (0 <= signed_dividend) - (signed_dividend < 0) ) * ( (0 <= signed_divisor) - (signed_divisor < 0) ); const uint32_t dividend = uint32_t(std::abs(signed_dividend)); const uint32_t divisor = uint32_t(std::abs(signed_divisor)); int cycles_expended = 12; // Covers the nn nnn n to get beyond the sign test. if(signed_dividend < 0) { cycles_expended += 2; // An additional microycle applies if the dividend is negative. } // Check for overflow. If it exists, work here is already done. const auto quotient = dividend / divisor; if(quotient > 32767) { status.overflow_flag_ = 1; flow_controller.consume_cycles(6*2); break; } const uint16_t remainder = uint16_t(signed_dividend % signed_divisor); const int signed_quotient = result_sign*int(quotient); dest.l = uint32_t((remainder << 16) | uint16_t(signed_quotient)); status.zero_result_ = decltype(status.zero_result_)(signed_quotient); status.negative_flag_ = status.zero_result_ & 0x8000; status.overflow_flag_ = 0; // Algorithm here: there is a fixed cost per unset bit // in the first 15 bits of the unsigned quotient. auto positive_quotient_bits = ~quotient & 0xfffe; convert_to_bit_count_16(positive_quotient_bits); cycles_expended += 2 * positive_quotient_bits; // There's then no way to terminate the loop that isn't at least ten cycles long; // there's also a fixed overhead per bit. The two together add up to the 104 below. cycles_expended += 104; // This picks up at 'No more bits' in yacht.txt's diagram. if(signed_divisor < 0) { cycles_expended += 2; } else if(signed_dividend < 0) { cycles_expended += 4; } flow_controller.consume_cycles(cycles_expended); } break; #undef announce_divide_by_zero // TRAP, which is a nicer form of ILLEGAL. case Operation::TRAP: flow_controller.raise_exception(src.l + 32); break; case Operation::TRAPV: { if(status.overflow_flag_) { flow_controller.raise_exception(7); } } break; case Operation::CHK: { const bool is_under = s_extend16(dest.w) < 0; const bool is_over = s_extend16(dest.w) > s_extend16(src.w); status.overflow_flag_ = status.carry_flag_ = 0; status.zero_result_ = dest.w; // Test applied for N: // // if Dn < 0, set negative flag; // otherwise, if Dn > , reset negative flag. if(is_over) status.negative_flag_ = 0; if(is_under) status.negative_flag_ = 1; // No exception is the default course of action; deviate only if an // exception is necessary. if(is_under || is_over) { if(is_over) { flow_controller.consume_cycles(10); } else { flow_controller.consume_cycles(12); } flow_controller.raise_exception(6); } } break; /* NEGs: negatives the destination, setting the zero, negative, overflow and carry flags appropriate, and extend. NB: since the same logic as SUB is used to calculate overflow, and SUB calculates `destination - source`, the NEGs deliberately label 'source' and 'destination' differently from Motorola. */ case Operation::NEGb: { const int destination = 0; const int source = dest.b; const auto result = destination - source; dest.b = uint8_t(result); status.zero_result_ = result & 0xff; status.extend_flag_ = status.carry_flag_ = decltype(status.carry_flag_)(result & ~0xff); status.negative_flag_ = result & 0x80; status.overflow_flag_ = sub_overflow() & 0x80; } break; case Operation::NEGw: { const int destination = 0; const int source = dest.w; const auto result = destination - source; dest.w = uint16_t(result); status.zero_result_ = result & 0xffff; status.extend_flag_ = status.carry_flag_ = decltype(status.carry_flag_)(result & ~0xffff); status.negative_flag_ = result & 0x8000; status.overflow_flag_ = sub_overflow() & 0x8000; } break; case Operation::NEGl: { const uint64_t destination = 0; const uint64_t source = dest.l; const auto result = destination - source; dest.l = uint32_t(result); status.zero_result_ = uint_fast32_t(result); status.extend_flag_ = status.carry_flag_ = result >> 32; status.negative_flag_ = result & 0x80000000; status.overflow_flag_ = sub_overflow() & 0x80000000; } break; /* NEGXs: NEG, with extend. */ case Operation::NEGXb: { const int source = dest.b; const int destination = 0; const auto result = destination - source - (status.extend_flag_ ? 1 : 0); dest.b = uint8_t(result); status.zero_result_ |= result & 0xff; status.extend_flag_ = status.carry_flag_ = decltype(status.carry_flag_)(result & ~0xff); status.negative_flag_ = result & 0x80; status.overflow_flag_ = sub_overflow() & 0x80; } break; case Operation::NEGXw: { const int source = dest.w; const int destination = 0; const auto result = destination - source - (status.extend_flag_ ? 1 : 0); dest.w = uint16_t(result); status.zero_result_ |= result & 0xffff; status.extend_flag_ = status.carry_flag_ = decltype(status.carry_flag_)(result & ~0xffff); status.negative_flag_ = result & 0x8000; status.overflow_flag_ = sub_overflow() & 0x8000; } break; case Operation::NEGXl: { const uint64_t source = dest.l; const uint64_t destination = 0; const auto result = destination - source - (status.extend_flag_ ? 1 : 0); dest.l = uint32_t(result); status.zero_result_ |= uint_fast32_t(result); status.extend_flag_ = status.carry_flag_ = result >> 32; status.negative_flag_ = result & 0x80000000; status.overflow_flag_ = sub_overflow() & 0x80000000; } break; /* The no-op. */ case Operation::NOP: break; /* LINK and UNLINK help with stack frames, allowing a certain amount of stack space to be allocated or deallocated. */ case Operation::LINKw: flow_controller.link(src.l, int16_t(dest.w)); break; case Operation::UNLINK: flow_controller.unlink(src.l); break; /* TAS: sets zero and negative depending on the current value of the destination, and sets the high bit. */ case Operation::TAS: status.overflow_flag_ = status.carry_flag_ = 0; status.zero_result_ = dest.b; status.negative_flag_ = dest.b & 0x80; dest.b |= 0x80; break; /* Bitwise operators: AND, OR and EOR. All three clear the overflow and carry flags, and set zero and negative appropriately. */ #define op_and(x, y) x &= y #define op_or(x, y) x |= y #define op_eor(x, y) x ^= y #define bitwise(source, dest, sign_mask, operator) \ operator(dest, source); \ status.overflow_flag_ = status.carry_flag_ = 0; \ status.zero_result_ = dest; \ status.negative_flag_ = dest & sign_mask; #define andx(source, dest, sign_mask) bitwise(source, dest, sign_mask, op_and) #define eorx(source, dest, sign_mask) bitwise(source, dest, sign_mask, op_eor) #define orx(source, dest, sign_mask) bitwise(source, dest, sign_mask, op_or) #define op_bwl(name, op) \ case Operation::name##b: op(src.b, dest.b, 0x80); break; \ case Operation::name##w: op(src.w, dest.w, 0x8000); break; \ case Operation::name##l: op(src.l, dest.l, 0x80000000); break; op_bwl(AND, andx); op_bwl(EOR, eorx); op_bwl(OR, orx); #undef op_bwl #undef orx #undef eorx #undef andx #undef bitwise #undef op_eor #undef op_or #undef op_and // NOTs: take the logical inverse, affecting the negative and zero flags. case Operation::NOTb: dest.b ^= 0xff; status.zero_result_ = dest.b; status.negative_flag_ = status.zero_result_ & 0x80; status.overflow_flag_ = status.carry_flag_ = 0; break; case Operation::NOTw: dest.w ^= 0xffff; status.zero_result_ = dest.w; status.negative_flag_ = status.zero_result_ & 0x8000; status.overflow_flag_ = status.carry_flag_ = 0; break; case Operation::NOTl: dest.l ^= 0xffffffff; status.zero_result_ = dest.l; status.negative_flag_ = status.zero_result_ & 0x80000000; status.overflow_flag_ = status.carry_flag_ = 0; break; #define sbcd(d) \ /* Perform the BCD arithmetic by evaluating the two nibbles separately. */ \ const int unadjusted_result = destination - source - (status.extend_flag_ ? 1 : 0); \ int result = (destination & 0xf) - (source & 0xf) - (status.extend_flag_ ? 1 : 0); \ if((result & 0x1f) > 0x09) result -= 0x06; \ result += (destination & 0xf0) - (source & 0xf0); \ status.extend_flag_ = status.carry_flag_ = decltype(status.carry_flag_)((result & 0x1ff) > 0x99); \ if(status.carry_flag_) result -= 0x60; \ \ /* Set all flags essentially as if this were normal subtraction. */ \ status.zero_result_ |= result & 0xff; \ status.negative_flag_ = result & 0x80; \ status.overflow_flag_ = unadjusted_result & ~result & 0x80; \ \ /* Store the result. */ \ d = uint8_t(result); /* SBCD subtracts the lowest byte of the source from that of the destination using BCD arithmetic, obeying the extend flag. */ case Operation::SBCD: { const uint8_t source = src.b; const uint8_t destination = dest.b; sbcd(dest.b); } break; /* NBCD is like SBCD except that the result is 0 - source rather than destination - source. */ case Operation::NBCD: { const uint8_t source = src.b; const uint8_t destination = 0; sbcd(src.b); } break; #undef sbcd // EXG and SWAP exchange/swap words or long words. case Operation::EXG: { const auto temporary = src.l; src.l = dest.l; dest.l = temporary; } break; case Operation::SWAP: { uint16_t *const words = reinterpret_cast(&src.l); const auto temporary = words[0]; words[0] = words[1]; words[1] = temporary; status.zero_result_ = src.l; status.negative_flag_ = temporary & 0x8000; status.overflow_flag_ = status.carry_flag_ = 0; } break; /* Shifts and rotates. */ #define set_neg_zero(v, m) \ status.zero_result_ = decltype(status.zero_result_)(v); \ status.negative_flag_ = status.zero_result_ & decltype(status.negative_flag_)(m); #define set_neg_zero_overflow(v, m) \ set_neg_zero(v, m); \ status.overflow_flag_ = (decltype(status.zero_result_)(value) ^ status.zero_result_) & decltype(status.overflow_flag_)(m); #define decode_shift_count() \ int shift_count = (decoded_instruction_.l & 32) ? data_[(decoded_instruction_.l >> 9) & 7].l&63 : ( ((decoded_instruction_.l >> 9)&7) ? ((decoded_instruction_.l >> 9)&7) : 8) ; \ flow_controller.consume_cycles(2 * shift_count); //#define set_flags_b(t) set_flags(dest.b, 0x80, t) #define set_flags_w(t) set_flags(src.w, 0x8000, t) //#define set_flags_l(t) set_flags(dest.l, 0x80000000, t) #define asl(destination, size) {\ decode_shift_count(); \ const auto value = destination; \ \ if(!shift_count) { \ status.carry_flag_ = status.overflow_flag_ = 0; \ } else { \ destination = (shift_count < size) ? decltype(destination)(value << shift_count) : 0; \ status.status.extend_flag_ = status.carry_flag_ = decltype(status.carry_flag_)(value) & decltype(status.carry_flag_)( (1u << (size - 1)) >> (shift_count - 1) ); \ \ if(shift_count >= size) status.overflow_flag_ = value && (value != decltype(value)(-1)); \ else { \ const auto mask = decltype(destination)(0xffffffff << (size - shift_count)); \ status.overflow_flag_ = mask & value && ((mask & value) != mask); \ } \ } \ \ set_neg_zero(destination, 1 << (size - 1)); \ } case Operation::ASLm: { const auto value = src.w; src.w = uint16_t(value << 1); status.extend_flag_ = status.carry_flag_ = value & 0x8000; set_neg_zero_overflow(src.w, 0x8000); } break; // case Operation::ASLb: asl(dest.b, 8); break; // case Operation::ASLw: asl(dest.w, 16); break; // case Operation::ASLl: asl(dest.l, 32); break; #define asr(destination, size) {\ decode_shift_count(); \ const auto value = destination; \ \ if(!shift_count) { \ carry_flag_ = 0; \ } else { \ destination = (shift_count < size) ? \ decltype(destination)(\ (value >> shift_count) | \ ((value & decltype(value)(1 << (size - 1)) ? 0xffffffff : 0x000000000) << (size - shift_count)) \ ) : \ decltype(destination)( \ (value & decltype(value)(1 << (size - 1))) ? 0xffffffff : 0x000000000 \ ); \ status.extend_flag_ = status.carry_flag_ = decltype(carry_flag_)(value) & decltype(carry_flag_)(1 << (shift_count - 1)); \ } \ \ set_neg_zero_overflow(destination, 1 << (size - 1)); \ } case Operation::ASRm: { const auto value = src.w; src.w = (value&0x8000) | (value >> 1); status.extend_flag_ = status.carry_flag_ = value & 1; set_neg_zero_overflow(src.w, 0x8000); } break; // case Operation::ASRb: asr(dest.b, 8); break; // case Operation::ASRw: asr(dest.w, 16); break; // case Operation::ASRl: asr(dest.l, 32); break; #undef set_neg_zero_overflow #define set_neg_zero_overflow(v, m) \ set_neg_zero(v, m); \ status.overflow_flag_ = 0; #undef set_flags #define set_flags(v, m, t) \ status.zero_result_ = v; \ status.negative_flag_ = status.zero_result_ & (m); \ status.overflow_flag_ = 0; \ status.carry_flag_ = value & (t); #define lsl(destination, size) {\ decode_shift_count(); \ const auto value = destination; \ \ if(!shift_count) { \ carry_flag_ = 0; \ } else { \ destination = (shift_count < size) ? decltype(destination)(value << shift_count) : 0; \ status.extend_flag_ = status.carry_flag_ = decltype(status.carry_flag_)(value) & decltype(status.carry_flag_)( (1u << (size - 1)) >> (shift_count - 1) ); \ } \ \ set_neg_zero_overflow(destination, 1 << (size - 1)); \ } case Operation::LSLm: { const auto value = src.w; src.w = uint16_t(value << 1); status.extend_flag_ = status.carry_flag_ = value & 0x8000; set_neg_zero_overflow(src.w, 0x8000); } break; // case Operation::LSLb: lsl(dest.b, 8); break; // case Operation::LSLw: lsl(dest.w, 16); break; // case Operation::LSLl: lsl(dest.l, 32); break; #define lsr(destination, size) {\ decode_shift_count(); \ const auto value = destination; \ \ if(!shift_count) { \ status.carry_flag_ = 0; \ } else { \ destination = (shift_count < size) ? (value >> shift_count) : 0; \ status.extend_flag_ = status.carry_flag_ = value & decltype(status.carry_flag_)(1 << (shift_count - 1)); \ } \ \ set_neg_zero_overflow(destination, 1 << (size - 1)); \ } case Operation::LSRm: { const auto value = src.w; src.w = value >> 1; status.extend_flag_ = status.carry_flag_ = value & 1; set_neg_zero_overflow(src.w, 0x8000); } break; // case Operation::LSRb: lsr(dest.b, 8); break; // case Operation::LSRw: lsr(dest.w, 16); break; // case Operation::LSRl: lsr(dest.l, 32); break; #define rol(destination, size) { \ decode_shift_count(); \ const auto value = destination; \ \ if(!shift_count) { \ status.carry_flag_ = 0; \ } else { \ shift_count &= (size - 1); \ destination = decltype(destination)( \ (value << shift_count) | \ (value >> (size - shift_count)) \ ); \ status.carry_flag_ = decltype(status.carry_flag_)(destination & 1); \ } \ \ set_neg_zero_overflow(destination, 1 << (size - 1)); \ } case Operation::ROLm: { const auto value = src.w; src.w = uint16_t((value << 1) | (value >> 15)); status.carry_flag_ = src.w & 1; set_neg_zero_overflow(src.w, 0x8000); } break; // case Operation::ROLb: rol(dest.b, 8); break; // case Operation::ROLw: rol(dest.w, 16); break; // case Operation::ROLl: rol(dest.l, 32); break; #define ror(destination, size) { \ decode_shift_count(); \ const auto value = destination; \ \ if(!shift_count) { \ status.carry_flag_ = 0; \ } else { \ shift_count &= (size - 1); \ destination = decltype(destination)(\ (value >> shift_count) | \ (value << (size - shift_count)) \ );\ status.carry_flag_ = destination & decltype(status.carry_flag_)(1 << (size - 1)); \ } \ \ set_neg_zero_overflow(destination, 1 << (size - 1)); \ } case Operation::RORm: { const auto value = src.w; src.w = uint16_t((value >> 1) | (value << 15)); status.carry_flag_ = src.w & 0x8000; set_neg_zero_overflow(src.w, 0x8000); } break; // case Operation::RORb: ror(dest.b, 8); break; // case Operation::RORw: ror(dest.w, 16); break; // case Operation::RORl: ror(dest.l, 32); break; #define roxl(destination, size) { \ shift_count %= (size + 1); \ uint64_t compound = uint64_t(destination) | (status.extend_flag_ ? (1ull << size) : 0); \ compound = \ (compound << shift_count) | \ (compound >> (size + 1 - shift_count)); \ status.carry_flag_ = status.extend_flag_ = decltype(status.carry_flag_)((compound >> size) & 1); \ destination = decltype(destination)(compound); \ \ set_neg_zero_overflow(destination, 1 << (size - 1)); \ } case Operation::ROXLm: { const auto value = src.w; src.w = uint16_t((value << 1) | (status.extend_flag_ ? 0x0001 : 0x0000)); status.extend_flag_ = value & 0x8000; set_flags_w(0x8000); } break; // case Operation::ROXLb: roxl(dest.b, 8); break; // case Operation::ROXLw: roxl(dest.w, 16); break; // case Operation::ROXLl: roxl(dest.l, 32); break; #define roxr(destination, size) { \ decode_shift_count(); \ \ shift_count %= (size + 1); \ uint64_t compound = uint64_t(destination) | (status.extend_flag_ ? (1ull << size) : 0); \ compound = \ (compound >> shift_count) | \ (compound << (size + 1 - shift_count)); \ status.carry_flag_ = status.extend_flag_ = decltype(status.carry_flag_)((compound >> size) & 1); \ destination = decltype(destination)(compound); \ \ set_neg_zero_overflow(destination, 1 << (size - 1)); \ } case Operation::ROXRm: { const auto value = src.w; src.w = (value >> 1) | (status.extend_flag_ ? 0x8000 : 0x0000); status.extend_flag_ = value & 0x0001; set_flags_w(0x0001); } break; // case Operation::ROXRb: roxr(dest.b, 8); break; // case Operation::ROXRw: roxr(dest.w, 16); break; // case Operation::ROXRl: roxr(dest.l, 32); break; #undef roxr #undef roxl #undef ror #undef rol #undef asr #undef lsr #undef lsl #undef asl #undef set_flags #undef decode_shift_count //#undef set_flags_b #undef set_flags_w //#undef set_flags_l #undef set_neg_zero_overflow #undef set_neg_zero case Operation::MOVEPl: if(instruction.mode<0>() == AddressingMode::DataRegisterDirect) { flow_controller.template movep_fromR(src.l, dest.l); } else { flow_controller.template movep_toR(src.l, dest.l); } break; case Operation::MOVEPw: if(instruction.mode<0>() == AddressingMode::DataRegisterDirect) { flow_controller.template movep_fromR(src.l, dest.l); } else { flow_controller.template movep_toR(src.l, dest.l); } break; /* RTE and RTR share an implementation. */ // case Operation::RTE_RTR: // // If this is RTR, patch out the supervisor half of the status register. // if(decoded_instruction_.l == 0x4e77) { // const auto current_status = status(); // source_bus_data_.halves.low.halves.high = // uint8_t(current_status >> 8); // } // apply_status(source_bus_data_.l); // break; // case Operation::RTE: // break; // // case Operation::RTR: // break; /* TSTs: compare to zero. */ case Operation::TSTb: status.carry_flag_ = status.overflow_flag_ = 0; status.zero_result_ = src.b; status.negative_flag_ = status.zero_result_ & 0x80; break; case Operation::TSTw: status.carry_flag_ = status.overflow_flag_ = 0; status.zero_result_ = src.w; status.negative_flag_ = status.zero_result_ & 0x8000; break; case Operation::TSTl: status.carry_flag_ = status.overflow_flag_ = 0; status.zero_result_ = src.l; status.negative_flag_ = status.zero_result_ & 0x80000000; break; case Operation::STOP: status.set_status(src.w); flow_controller.stop(); break; /* Development period debugging. */ default: assert(false); break; } #undef sub_overflow #undef add_overflow #undef u_extend16 #undef u_extend8 #undef s_extend16 #undef s_extend8 #undef convert_to_bit_count_16 } } } #endif /* InstructionSets_M68k_PerformImplementation_h */