// // TimedEventLoop.cpp // Clock Signal // // Created by Thomas Harte on 29/07/2016. // Copyright 2016 Thomas Harte. All rights reserved. // #include "TimedEventLoop.hpp" #include <algorithm> #include <cassert> #include <cmath> using namespace Storage; TimedEventLoop::TimedEventLoop(Cycles::IntType input_clock_rate) : input_clock_rate_(input_clock_rate) {} void TimedEventLoop::run_for(const Cycles cycles) { auto remaining_cycles = cycles.as_integral(); #ifndef NDEBUG decltype(remaining_cycles) cycles_advanced = 0; #endif while(cycles_until_event_ <= remaining_cycles) { #ifndef NDEBUG cycles_advanced += cycles_until_event_; #endif advance(cycles_until_event_); remaining_cycles -= cycles_until_event_; cycles_until_event_ = 0; process_next_event(); } if(remaining_cycles) { cycles_until_event_ -= remaining_cycles; #ifndef NDEBUG cycles_advanced += remaining_cycles; #endif advance(remaining_cycles); } assert(cycles_advanced == cycles.as_integral()); assert(cycles_until_event_ > 0); } Cycles::IntType TimedEventLoop::get_cycles_until_next_event() const { return std::max(cycles_until_event_, Cycles::IntType(0)); } Cycles::IntType TimedEventLoop::get_input_clock_rate() const { return input_clock_rate_; } void TimedEventLoop::reset_timer() { subcycles_until_event_ = 0.0; cycles_until_event_ = 0; } void TimedEventLoop::jump_to_next_event() { reset_timer(); process_next_event(); } void TimedEventLoop::set_next_event_time_interval(Time interval) { set_next_event_time_interval(interval.get<float>()); } void TimedEventLoop::set_next_event_time_interval(float interval) { // Calculate [interval]*[input clock rate] + [subcycles until this event] const float float_interval = interval * float(input_clock_rate_) + subcycles_until_event_; // This event will fire in the integral number of cycles from now, putting us at the remainder // number of subcycles. const Cycles::IntType addition = Cycles::IntType(float_interval); cycles_until_event_ += addition; subcycles_until_event_ = fmodf(float_interval, 1.0f); assert(cycles_until_event_ >= 0); assert(subcycles_until_event_ >= 0.0f); } Time TimedEventLoop::get_time_into_next_event() { // TODO: calculate, presumably as [length of interval] - ([cycles left] + [subcycles left]) Time zero; return zero; }