// // Draw.hpp // Clock Signal // // Created by Thomas Harte on 05/01/2023. // Copyright © 2023 Thomas Harte. All rights reserved. // #pragma once namespace TI::TMS { // MARK: - Sprites, as generalised. template template void Base::draw_sprites( [[maybe_unused]] const uint8_t y, const int start, const int end, const std::array &palette, int *const colour_buffer ) { if(!draw_line_buffer_->sprites) { return; } auto &buffer = *draw_line_buffer_->sprites; if(!buffer.active_sprite_slot) { return; } const int shift_advance = sprites_magnified_ ? 1 : 2; // If this is the start of the line clip any part of any sprites that is off to the left. if(!start) { for(int index = 0; index < buffer.active_sprite_slot; ++index) { auto &sprite = buffer.active_sprites[index]; if(sprite.x < 0) sprite.shift_position -= shift_advance * sprite.x; } } int sprite_buffer[256]; int sprite_collision = 0; memset(&sprite_buffer[start], 0, size_t(end - start)*sizeof(sprite_buffer[0])); if constexpr (mode == SpriteMode::MasterSystem) { // Draw all sprites into the sprite buffer. for(int index = buffer.active_sprite_slot - 1; index >= 0; --index) { auto &sprite = buffer.active_sprites[index]; if(sprite.shift_position >= 16) { continue; } const int pixel_start = std::max(start, sprite.x); // TODO: it feels like the work below should be simplifiable; // the double shift in particular, and hopefully the variable shift. for(int c = pixel_start; c < end && sprite.shift_position < 16; ++c) { const int shift = (sprite.shift_position >> 1); const int sprite_colour = (((sprite.image[3] << shift) & 0x80) >> 4) | (((sprite.image[2] << shift) & 0x80) >> 5) | (((sprite.image[1] << shift) & 0x80) >> 6) | (((sprite.image[0] << shift) & 0x80) >> 7); if(sprite_colour) { sprite_collision |= sprite_buffer[c]; sprite_buffer[c] = sprite_colour | 0x10; } sprite.shift_position += shift_advance; } } // Draw the sprite buffer onto the colour buffer, wherever the tile map doesn't have // priority (or is transparent). for(int c = start; c < end; ++c) { if( sprite_buffer[c] && (!(colour_buffer[c]&0x20) || !(colour_buffer[c]&0xf)) ) colour_buffer[c] = sprite_buffer[c]; } if(sprite_collision) { status_ |= StatusSpriteCollision; } return; } if constexpr (SpriteBuffer::test_is_filling) { assert(!buffer.is_filling); } constexpr uint32_t sprite_colour_selection_masks[2] = {0x00000000, 0xffffffff}; constexpr int colour_masks[16] = {0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}; const int sprite_width = sprites_16x16_ ? 16 : 8; const int shifter_target = sprite_width << 1; const int pixel_width = sprites_magnified_ ? sprite_width << 1 : sprite_width; int min_sprite = 0; // // Approach taken for Mode 2 sprites: // // (1) precompute full sprite images, at up to 32 pixels wide; // (2) for each sprite that is marked as CC, walk backwards until the // first sprite that is not marked CC, ORing it into the precomputed // image at each step; // (3) subsequently, just draw each sprite image independently. // if constexpr (mode == SpriteMode::Mode2) { // Determine the lowest visible sprite; exit early if that leaves no sprites visible. for(; min_sprite < buffer.active_sprite_slot; min_sprite++) { auto &sprite = buffer.active_sprites[min_sprite]; if(sprite.opaque()) { break; } } if(min_sprite == buffer.active_sprite_slot) { return; } if(!start) { // Pre-rasterise the sprites one-by-one. if(sprites_magnified_) { for(int index = min_sprite; index < buffer.active_sprite_slot; index++) { auto &sprite = buffer.active_sprites[index]; for(int c = 0; c < 32; c+= 2) { const int shift = (c >> 1) ^ 7; const int bit = 1 & (sprite.image[shift >> 3] >> (shift & 7)); Storage::sprite_cache_[index][c] = Storage::sprite_cache_[index][c + 1] = (sprite.image[2] & 0xf & sprite_colour_selection_masks[bit]) | uint8_t((bit << StatusSpriteCollisionShift) & sprite.collision_bit()); } } } else { for(int index = min_sprite; index < buffer.active_sprite_slot; index++) { auto &sprite = buffer.active_sprites[index]; for(int c = 0; c < 16; c++) { const int shift = c ^ 7; const int bit = 1 & (sprite.image[shift >> 3] >> (shift & 7)); Storage::sprite_cache_[index][c] = (sprite.image[2] & 0xf & sprite_colour_selection_masks[bit]) | uint8_t((bit << StatusSpriteCollisionShift) & sprite.collision_bit()); } } } // Go backwards compositing any sprites that are set as OR masks onto their parents. for(int index = buffer.active_sprite_slot - 1; index >= min_sprite + 1; --index) { auto &sprite = buffer.active_sprites[index]; if(sprite.opaque()) { continue; } // Sprite may affect all previous up to and cindlugin the next one that is opaque. for(int previous_index = index - 1; previous_index >= min_sprite; --previous_index) { // Determine region of overlap (if any). auto &previous = buffer.active_sprites[previous_index]; const int origin = sprite.x - previous.x; const int x1 = std::max(0, -origin); const int x2 = std::min(pixel_width - origin, pixel_width); // Composite sprites. for(int x = x1; x < x2; x++) { Storage::sprite_cache_[previous_index][x + origin] |= Storage::sprite_cache_[index][x]; } // If a previous opaque sprite has been found, stop. if(previous.opaque()) { break; } } } } // Draw. for(int index = buffer.active_sprite_slot - 1; index >= min_sprite; --index) { auto &sprite = buffer.active_sprites[index]; const int x1 = std::max(0, start - sprite.x); const int x2 = std::min(end - sprite.x, pixel_width); for(int x = x1; x < x2; x++) { const uint8_t colour = Storage::sprite_cache_[index][x]; // Plot colour, if visible. if(colour) { pixel_origin_[sprite.x + x] = palette[colour & 0xf]; } // TODO: is collision location recorded in mode 1? // Check for a new collision. if(!(status_ & StatusSpriteCollision)) { sprite_collision |= sprite_buffer[sprite.x + x]; sprite_buffer[sprite.x + x] |= colour; status_ |= sprite_collision & StatusSpriteCollision; if(status_ & StatusSpriteCollision) { Storage::collision_location_[0] = uint16_t(x); Storage::collision_location_[1] = uint16_t(y); } } } } return; } if constexpr (mode == SpriteMode::Mode1) { for(int index = buffer.active_sprite_slot - 1; index >= min_sprite; --index) { auto &sprite = buffer.active_sprites[index]; if(sprite.shift_position >= shifter_target) { continue; } const int pixel_start = std::max(start, sprite.x); for(int c = pixel_start; c < end && sprite.shift_position < shifter_target; ++c) { const int shift = (sprite.shift_position >> 1) ^ 7; int sprite_colour = (sprite.image[shift >> 3] >> (shift & 7)) & 1; // A colision is detected regardless of sprite colour ... sprite_collision |= sprite_buffer[c] & sprite_colour; sprite_buffer[c] |= sprite_colour; // ... but a sprite with the transparent colour won't actually be visible. sprite_colour &= colour_masks[sprite.image[2] & 0xf]; pixel_origin_[c] = (pixel_origin_[c] & sprite_colour_selection_masks[sprite_colour^1]) | (palette[sprite.image[2] & 0xf] & sprite_colour_selection_masks[sprite_colour]); sprite.shift_position += shift_advance; } } status_ |= sprite_collision << StatusSpriteCollisionShift; return; } } // Mode 2 logic, as I currently understand it, as a note for my future self: // // If a sprite is marked as 'CC' then it doesn't collide, but its colour value is // ORd with those of all lower-numbered sprites down to the next one that is visible on // that line and not marked CC. // // If no previous sprite meets that criteria, no pixels are displayed. But if one does // then pixels are displayed even where they don't overlap with the earlier sprites. // // ... so in terms of my loop above, I guess I need temporary storage to accumulate // an OR mask up until I hit a non-CC sprite, at which point I composite everything out? // I'm not immediately sure whether I can appropriately reuse sprite_buffer, but possibly? // MARK: - TMS9918 template template void Base::draw_tms_character(const int start, const int end) { auto &line_buffer = *draw_line_buffer_; // Paint the background tiles. const int pixels_left = end - start; if(this->screen_mode_ == ScreenMode::MultiColour) { for(int c = start; c < end; ++c) { pixel_target_[c] = palette()[ (line_buffer.tiles.patterns[c >> 3][0] >> (((c & 4)^4))) & 15 ]; } } else { const int shift = start & 7; int byte_column = start >> 3; int length = std::min(pixels_left, 8 - shift); int pattern = Numeric::bit_reverse(line_buffer.tiles.patterns[byte_column][0]) >> shift; uint8_t colour = line_buffer.tiles.patterns[byte_column][1]; uint32_t colours[2] = { palette()[(colour & 15) ? (colour & 15) : background_colour_], palette()[(colour >> 4) ? (colour >> 4) : background_colour_] }; int background_pixels_left = pixels_left; while(true) { background_pixels_left -= length; for(int c = 0; c < length; ++c) { pixel_target_[c] = colours[pattern&0x01]; pattern >>= 1; } pixel_target_ += length; if(!background_pixels_left) break; length = std::min(8, background_pixels_left); byte_column++; pattern = Numeric::bit_reverse(line_buffer.tiles.patterns[byte_column][0]); colour = line_buffer.tiles.patterns[byte_column][1]; colours[0] = palette()[(colour & 15) ? (colour & 15) : background_colour_]; colours[1] = palette()[(colour >> 4) ? (colour >> 4) : background_colour_]; } } draw_sprites(0, start, end, palette()); // TODO: propagate a real 'y' into here. } template template void Base::draw_tms_text(const int start, const int end) { auto &line_buffer = *draw_line_buffer_; uint32_t colours[2][2] = { {palette()[background_colour_], palette()[text_colour_]}, {0, 0} }; if constexpr (apply_blink) { colours[1][0] = palette()[Storage::blink_background_colour_]; colours[1][1] = palette()[Storage::blink_text_colour_]; } const int shift = start % 6; int byte_column = start / 6; int pattern = Numeric::bit_reverse(line_buffer.characters.shapes[byte_column]) >> shift; int pixels_left = end - start; int length = std::min(pixels_left, 6 - shift); int flag = 0; if constexpr (apply_blink) { flag = (line_buffer.characters.flags[byte_column >> 3] >> ((byte_column & 7) ^ 7)) & Storage::in_blink_; } while(true) { pixels_left -= length; for(int c = 0; c < length; ++c) { pixel_target_[c] = colours[flag][(pattern&0x01)]; pattern >>= 1; } pixel_target_ += length; if(!pixels_left) break; length = std::min(6, pixels_left); byte_column++; pattern = Numeric::bit_reverse(line_buffer.characters.shapes[byte_column]); if constexpr (apply_blink) { flag = (line_buffer.characters.flags[byte_column >> 3] >> ((byte_column & 7) ^ 7)) & Storage::in_blink_; } } } // MARK: - Master System template void Base::draw_sms( [[maybe_unused]] const int start, [[maybe_unused]] const int end, [[maybe_unused]] const uint32_t cram_dot ) { if constexpr (is_sega_vdp(personality)) { int colour_buffer[256]; auto &line_buffer = *draw_line_buffer_; /* Add extra border for any pixels that fall before the fine scroll. */ int tile_start = start, tile_end = end; int tile_offset = start; if(output_pointer_.row >= 16 || !Storage::horizontal_scroll_lock_) { for(int c = start; c < (line_buffer.latched_horizontal_scroll & 7); ++c) { colour_buffer[c] = 16 + background_colour_; ++tile_offset; } // Remove the border area from that to which tiles will be drawn. tile_start = std::max(start - (line_buffer.latched_horizontal_scroll & 7), 0); tile_end = std::max(end - (line_buffer.latched_horizontal_scroll & 7), 0); } uint32_t pattern; uint8_t *const pattern_index = reinterpret_cast(&pattern); /* Add background tiles; these will fill the colour_buffer with values in which the low five bits are a palette index, and bit six is set if this tile has priority over sprites. */ if(tile_start < end) { const int shift = tile_start & 7; int byte_column = tile_start >> 3; int pixels_left = tile_end - tile_start; int length = std::min(pixels_left, 8 - shift); pattern = *reinterpret_cast(line_buffer.tiles.patterns[byte_column]); if(line_buffer.tiles.flags[byte_column]&2) pattern >>= shift; else pattern <<= shift; while(true) { const int palette_offset = (line_buffer.tiles.flags[byte_column]&0x18) << 1; if(line_buffer.tiles.flags[byte_column]&2) { for(int c = 0; c < length; ++c) { colour_buffer[tile_offset] = ((pattern_index[3] & 0x01) << 3) | ((pattern_index[2] & 0x01) << 2) | ((pattern_index[1] & 0x01) << 1) | ((pattern_index[0] & 0x01) << 0) | palette_offset; ++tile_offset; pattern >>= 1; } } else { for(int c = 0; c < length; ++c) { colour_buffer[tile_offset] = ((pattern_index[3] & 0x80) >> 4) | ((pattern_index[2] & 0x80) >> 5) | ((pattern_index[1] & 0x80) >> 6) | ((pattern_index[0] & 0x80) >> 7) | palette_offset; ++tile_offset; pattern <<= 1; } } pixels_left -= length; if(!pixels_left) break; length = std::min(8, pixels_left); byte_column++; pattern = *reinterpret_cast(line_buffer.tiles.patterns[byte_column]); } } /* Apply sprites (if any). */ draw_sprites(0, start, end, palette(), colour_buffer); // TODO provide good y, as per elsewhere. // Map from the 32-colour buffer to real output pixels, applying the specific CRAM dot if any. pixel_target_[start] = Storage::colour_ram_[colour_buffer[start] & 0x1f] | cram_dot; for(int c = start+1; c < end; ++c) { pixel_target_[c] = Storage::colour_ram_[colour_buffer[c] & 0x1f]; } // If the VDP is set to hide the left column and this is the final call that'll come // this line, hide it. if(end == 256) { if(Storage::hide_left_column_) { pixel_origin_[0] = pixel_origin_[1] = pixel_origin_[2] = pixel_origin_[3] = pixel_origin_[4] = pixel_origin_[5] = pixel_origin_[6] = pixel_origin_[7] = Storage::colour_ram_[16 + background_colour_]; } } } } // MARK: - Yamaha template template void Base::draw_yamaha(const uint8_t y, int start, int end) { [[maybe_unused]] const auto active_palette = palette(); const int sprite_start = start >> 2; const int sprite_end = end >> 2; auto &line_buffer = *draw_line_buffer_; // Observation justifying Duff's device below: it's acceptable to paint too many pixels — to paint // beyond `end` — provided that the overpainting is within normal bitmap bounds, because any // mispainted pixels will be replaced before becoming visible to the user. if constexpr (mode == ScreenMode::YamahaGraphics4 || mode == ScreenMode::YamahaGraphics6) { start >>= (mode == ScreenMode::YamahaGraphics4) ? 2 : 1; end >>= (mode == ScreenMode::YamahaGraphics4) ? 2 : 1; int column = start & ~1; const int offset = start & 1; start >>= 1; end = (end + 1) >> 1; switch(offset) { case 0: do { pixel_target_[column+0] = active_palette[line_buffer.bitmap[start] >> 4]; [[fallthrough]]; case 1: pixel_target_[column+1] = active_palette[line_buffer.bitmap[start] & 0xf]; ++start; column += 2; } while(start < end); } } if constexpr (mode == ScreenMode::YamahaGraphics5) { start >>= 1; end >>= 1; int column = start & ~3; const int offset = start & 3; start >>= 2; end = (end + 3) >> 2; switch(offset) { case 0: do { pixel_target_[column+0] = active_palette[line_buffer.bitmap[start] >> 6]; [[fallthrough]]; case 1: pixel_target_[column+1] = active_palette[(line_buffer.bitmap[start] >> 4) & 3]; [[fallthrough]]; case 2: pixel_target_[column+2] = active_palette[(line_buffer.bitmap[start] >> 2) & 3]; [[fallthrough]]; case 3: pixel_target_[column+3] = active_palette[line_buffer.bitmap[start] & 3]; ++start; column += 4; } while(start < end); } } if constexpr (mode == ScreenMode::YamahaGraphics7) { start >>= 2; end >>= 2; while(start < end) { pixel_target_[start] = palette_pack( uint8_t((line_buffer.bitmap[start] & 0x1c) + ((line_buffer.bitmap[start] & 0x1c) << 3) + ((line_buffer.bitmap[start] & 0x1c) >> 3)), uint8_t((line_buffer.bitmap[start] & 0xe0) + ((line_buffer.bitmap[start] & 0xe0) >> 3) + ((line_buffer.bitmap[start] & 0xe0) >> 6)), uint8_t((line_buffer.bitmap[start] & 0x03) + ((line_buffer.bitmap[start] & 0x03) << 2) + ((line_buffer.bitmap[start] & 0x03) << 4) + ((line_buffer.bitmap[start] & 0x03) << 6)) ); ++start; } } constexpr std::array graphics7_sprite_palette = { palette_pack(0b00000000, 0b00000000, 0b00000000), palette_pack(0b00000000, 0b00000000, 0b01001001), palette_pack(0b00000000, 0b01101101, 0b00000000), palette_pack(0b00000000, 0b01101101, 0b01001001), palette_pack(0b01101101, 0b00000000, 0b00000000), palette_pack(0b01101101, 0b00000000, 0b01001001), palette_pack(0b01101101, 0b01101101, 0b00000000), palette_pack(0b01101101, 0b01101101, 0b01001001), palette_pack(0b10010010, 0b11111111, 0b01001001), palette_pack(0b00000000, 0b00000000, 0b11111111), palette_pack(0b00000000, 0b11111111, 0b00000000), palette_pack(0b00000000, 0b11111111, 0b11111111), palette_pack(0b11111111, 0b00000000, 0b00000000), palette_pack(0b11111111, 0b00000000, 0b11111111), palette_pack(0b11111111, 0b11111111, 0b00000000), palette_pack(0b11111111, 0b11111111, 0b11111111), }; // Possibly TODO: is the data-sheet trying to allege some sort of colour mixing for sprites in Mode 6? draw_sprites< SpriteMode::Mode2, mode == ScreenMode::YamahaGraphics5 || mode == ScreenMode::YamahaGraphics6 >(y, sprite_start, sprite_end, mode == ScreenMode::YamahaGraphics7 ? graphics7_sprite_palette : palette()); } template void Base::draw_yamaha(const uint8_t y, const int start, const int end) { if constexpr (is_yamaha_vdp(personality)) { switch(draw_line_buffer_->screen_mode) { // Modes that are the same (or close enough) to those on the TMS. case ScreenMode::Text: draw_tms_text(start >> 2, end >> 2); break; case ScreenMode::YamahaText80: draw_tms_text(start >> 1, end >> 1); break; case ScreenMode::MultiColour: case ScreenMode::ColouredText: case ScreenMode::Graphics: draw_tms_character(start >> 2, end >> 2); break; case ScreenMode::YamahaGraphics3: draw_tms_character(start >> 2, end >> 2); break; #define Dispatch(x) case ScreenMode::x: draw_yamaha(y, start, end); break; Dispatch(YamahaGraphics4); Dispatch(YamahaGraphics5); Dispatch(YamahaGraphics6); Dispatch(YamahaGraphics7); #undef Dispatch default: break; } } } // MARK: - Mega Drive // TODO. }