// // Video.hpp // Clock Signal // // Created by Thomas Harte on 04/10/2019. // Copyright © 2019 Thomas Harte. All rights reserved. // #ifndef Atari_ST_Video_hpp #define Atari_ST_Video_hpp #include "../../../Outputs/CRT/CRT.hpp" #include "../../../ClockReceiver/ClockReceiver.hpp" #include "../../../ClockReceiver/DeferredQueue.hpp" #include namespace Atari { namespace ST { /*! Models a combination of the parts of the GLUE, MMU and Shifter that in net form the video subsystem of the Atari ST. So not accurate to a real chip, but (hopefully) to a subsystem. */ class Video { public: Video(); /*! Sets the memory pool that provides video, and its size. */ void set_ram(uint16_t *, size_t size); /*! Sets the target device for video data. */ void set_scan_target(Outputs::Display::ScanTarget *scan_target); /*! Produces the next @c duration period of pixels. */ void run_for(HalfCycles duration); /*! @returns the number of cycles until there is next a change in the hsync, vsync or display_enable outputs. */ HalfCycles get_next_sequence_point(); /*! @returns @c true if the horizontal sync output is currently active; @c false otherwise. @discussion On an Atari ST, this generates a VPA-style interrupt, which is often erroneously documented as being triggered by horizontal blank. */ bool hsync(); /*! @returns @c true if the vertical sync output is currently active; @c false otherwise. @discussion On an Atari ST, this generates a VPA-style interrupt, which is often erroneously documented as being triggered by vertical blank. */ bool vsync(); /*! @returns @c true if the display enabled output is currently active; @c false otherwise. @discussion On an Atari ST this is fed to the MFP. The documentation that I've been able to find implies a total 28-cycle delay between the real delay enabled signal changing and its effect on the 68000 interrupt input via the MFP. As I have yet to determine how much delay is caused by the MFP a full 28-cycle delay is applied by this class. This should be dialled down when the MFP's responsibility is clarified. */ bool display_enabled(); /// @returns the effect of reading from @c address; only the low 6 bits are decoded. uint16_t read(int address); /// Writes @c value to @c address, of which only the low 6 bits are decoded. void write(int address, uint16_t value); /// Used internally to track state. enum class FieldFrequency { Fifty = 0, Sixty = 1, SeventyTwo = 2 }; struct RangeObserver { /// Indicates to the observer that the memory access range has changed. virtual void video_did_change_access_range(Video *) = 0; }; /// Sets a range observer, which is an actor that will be notified if the memory access range changes. void set_range_observer(RangeObserver *); struct Range { uint32_t low_address, high_address; }; /*! @returns the range of addresses that the video might read from. */ Range get_memory_access_range(); private: void advance(HalfCycles duration); DeferredQueue deferrer_; Outputs::CRT::CRT crt_; RangeObserver *range_observer_ = nullptr; uint16_t raw_palette_[16]; uint16_t palette_[16]; int base_address_ = 0; int previous_base_address_ = 0; int current_address_ = 0; uint16_t *ram_ = nullptr; uint16_t line_buffer_[256]; int x_ = 0, y_ = 0, next_y_ = 0; int next_load_toggle_ = -1; bool load_ = false; int load_base_ = 0; uint16_t video_mode_ = 0; uint16_t sync_mode_ = 0; FieldFrequency field_frequency_ = FieldFrequency::Fifty; enum class OutputBpp { One, Two, Four } output_bpp_ = OutputBpp::Four; void update_output_mode(); struct HorizontalState { bool enable = false; bool blank = false; bool sync = false; } horizontal_; struct VerticalState { bool enable = false; bool blank = false; enum class SyncSchedule { /// No sync events this line. None, /// Sync should begin during this horizontal line. Begin, /// Sync should end during this horizontal line. End, } sync_schedule = SyncSchedule::None; bool sync = false; } vertical_, next_vertical_; int line_length_ = 1024; int data_latch_position_ = 0; int data_latch_read_position_ = 0; uint16_t data_latch_[128]; void push_latched_data(); void reset_fifo(); class Shifter { public: Shifter(Outputs::CRT::CRT &crt, uint16_t *palette) : crt_(crt), palette_(palette) {} void output_blank(int duration); void output_sync(int duration); void output_border(int duration, OutputBpp bpp); void output_pixels(int duration, OutputBpp bpp); void load(uint64_t value); private: int duration_ = 0; enum class OutputMode { Sync, Blank, Border, Pixels } output_mode_ = OutputMode::Sync; uint16_t border_colour_ = 0; OutputBpp bpp_ = OutputBpp::Four; union { uint64_t output_shifter_; uint32_t shifter_halves_[2]; }; void flush_output(OutputMode next_mode); uint16_t *pixel_buffer_ = nullptr; size_t pixel_pointer_ = 0; Outputs::CRT::CRT &crt_; uint16_t *palette_ = nullptr; } shifter_; /// Contains copies of the various observeable fields, after the relevant propagation delay. struct PublicState { bool display_enable = false; } public_state_; struct Event { int delay; enum class Type { SetDisplayEnable, ResetDisplayEnable } type; Event(Type type, int delay) : delay(delay), type(type) {} void apply(PublicState &state) { apply(type, state); } static void apply(Type type, PublicState &state) { switch(type) { default: case Type::SetDisplayEnable: state.display_enable = true; break; case Type::ResetDisplayEnable: state.display_enable = false; break; } } }; std::vector pending_events_; void add_event(int delay, Event::Type type) { // Apply immediately if there's no delay (or a negative delay). if(delay <= 0) { Event::apply(type, public_state_); return; } // Otherwise enqueue, having subtracted the delay for any preceding events, // and subtracting from the subsequent, if any. auto insertion_point = pending_events_.begin(); while(insertion_point != pending_events_.end() && insertion_point->delay > delay) { delay -= insertion_point->delay; ++insertion_point; } if(insertion_point != pending_events_.end()) { insertion_point->delay -= delay; } pending_events_.emplace(insertion_point, type, delay); } }; } } #endif /* Atari_ST_Video_hpp */