// // 6560.hpp // Clock Signal // // Created by Thomas Harte on 05/06/2016. // Copyright 2016 Thomas Harte. All rights reserved. // #pragma once #include "../../ClockReceiver/ClockReceiver.hpp" #include "../../Concurrency/AsyncTaskQueue.hpp" #include "../../Outputs/CRT/CRT.hpp" #include "../../Outputs/Speaker/Implementation/LowpassSpeaker.hpp" #include "../../Outputs/Speaker/Implementation/BufferSource.hpp" namespace MOS::MOS6560 { // audio state class AudioGenerator: public Outputs::Speaker::BufferSource { public: AudioGenerator(Concurrency::AsyncTaskQueue &audio_queue); void set_volume(uint8_t); void set_control(int channel, uint8_t value); // For ::SampleSource. template void apply_samples(std::size_t number_of_samples, Outputs::Speaker::MonoSample *target); void set_sample_volume_range(std::int16_t); private: Concurrency::AsyncTaskQueue &audio_queue_; unsigned int counters_[4] = {2, 1, 0, 0}; // create a slight phase offset for the three channels unsigned int shift_registers_[4] = {0, 0, 0, 0}; uint8_t control_registers_[4] = {0, 0, 0, 0}; int16_t volume_ = 0; int16_t dc_offset_ = 0; int16_t range_multiplier_ = 1; }; struct BusHandler { void perform_read(uint16_t, uint8_t *const pixel_data, uint8_t *const colour_data) { *pixel_data = 0xff; *colour_data = 0xff; } }; enum class OutputMode { PAL, NTSC }; /*! The 6560 Video Interface Chip ('VIC') is a video and audio output chip; it therefore vends both a @c CRT and a @c Speaker. To run the VIC for a cycle, the caller should call @c get_address, make the requested bus access and call @c set_graphics_value with the result. @c write and @c read provide register access. */ template class MOS6560 { public: MOS6560(BusHandler &bus_handler) : bus_handler_(bus_handler), crt_(65*4, 1, Outputs::Display::Type::NTSC60, Outputs::Display::InputDataType::Luminance8Phase8), audio_generator_(audio_queue_), speaker_(audio_generator_) { // default to s-video output crt_.set_display_type(Outputs::Display::DisplayType::SVideo); // default to NTSC set_output_mode(OutputMode::NTSC); } ~MOS6560() { audio_queue_.flush(); } void set_clock_rate(const double clock_rate) { speaker_.set_input_rate(float(clock_rate / 4.0)); } void set_scan_target(Outputs::Display::ScanTarget *const scan_target) { crt_.set_scan_target(scan_target); } Outputs::Display::ScanStatus get_scaled_scan_status() const { return crt_.get_scaled_scan_status() / 4.0f; } void set_display_type(const Outputs::Display::DisplayType display_type) { crt_.set_display_type(display_type); } Outputs::Display::DisplayType get_display_type() const { return crt_.get_display_type(); } Outputs::Speaker::Speaker *get_speaker() { return &speaker_; } void set_high_frequency_cutoff(const float cutoff) { speaker_.set_high_frequency_cutoff(cutoff); } /*! Sets the output mode to either PAL or NTSC. */ void set_output_mode(const OutputMode output_mode) { output_mode_ = output_mode; // Luminances are encoded trivially: on a 0-255 scale. const uint8_t luminances[16] = { 0, 255, 64, 192, 128, 128, 64, 192, 128, 192, 128, 255, 192, 192, 128, 255 }; // Chrominances are encoded such that 0-128 is a complete revolution of phase; // anything above 191 disables the colour subcarrier. Phase is relative to the // colour burst, so 0 is green (NTSC) or blue/violet (PAL). const uint8_t pal_chrominances[16] = { 255, 255, 90, 20, 96, 42, 8, 72, 84, 90, 90, 20, 96, 42, 8, 72, }; const uint8_t ntsc_chrominances[16] = { 255, 255, 121, 57, 103, 42, 80, 16, 0, 9, 121, 57, 103, 42, 80, 16, }; const uint8_t *chrominances; Outputs::Display::Type display_type; switch(output_mode) { default: chrominances = pal_chrominances; display_type = Outputs::Display::Type::PAL50; timing_.cycles_per_line = 71; timing_.line_counter_increment_offset = 4; timing_.final_line_increment_position = timing_.cycles_per_line - timing_.line_counter_increment_offset; timing_.lines_per_progressive_field = 312; timing_.supports_interlacing = false; break; case OutputMode::NTSC: chrominances = ntsc_chrominances; display_type = Outputs::Display::Type::NTSC60; timing_.cycles_per_line = 65; timing_.line_counter_increment_offset = 40; timing_.final_line_increment_position = 58; timing_.lines_per_progressive_field = 261; timing_.supports_interlacing = true; break; } crt_.set_new_display_type(timing_.cycles_per_line*4, display_type); switch(output_mode) { case OutputMode::PAL: crt_.set_visible_area(Outputs::Display::Rect(0.1f, 0.07f, 0.9f, 0.9f)); break; case OutputMode::NTSC: crt_.set_visible_area(Outputs::Display::Rect(0.05f, 0.05f, 0.9f, 0.9f)); break; } for(int c = 0; c < 16; c++) { uint8_t *colour = reinterpret_cast(&colours_[c]); colour[0] = luminances[c]; colour[1] = chrominances[c]; } } /*! Runs for cycles. Derr. */ inline void run_for(const Cycles cycles) { // keep track of the amount of time since the speaker was updated; lazy updates are applied cycles_since_speaker_update_ += cycles; auto number_of_cycles = cycles.as_integral(); while(number_of_cycles--) { // keep an old copy of the vertical count because that test is a cycle later than the actual changes int previous_vertical_counter = vertical_counter_; // keep track of internal time relative to this scanline ++horizontal_counter_; if(horizontal_counter_ == timing_.cycles_per_line) { if(horizontal_drawing_latch_) { ++current_character_row_; if( (current_character_row_ == 16) || (current_character_row_ == 8 && !registers_.tall_characters) ) { current_character_row_ = 0; ++current_row_; } pixel_line_cycle_ = -1; columns_this_line_ = -1; column_counter_ = -1; } horizontal_counter_ = 0; if(output_mode_ == OutputMode::PAL) is_odd_line_ ^= true; horizontal_drawing_latch_ = false; ++vertical_counter_; if(vertical_counter_ == lines_this_field()) { vertical_counter_ = 0; if(output_mode_ == OutputMode::NTSC) is_odd_frame_ ^= true; current_row_ = 0; rows_this_field_ = -1; vertical_drawing_latch_ = false; base_video_matrix_address_counter_ = 0; current_character_row_ = 0; } } // check for vertical starting events vertical_drawing_latch_ |= registers_.first_row_location == (previous_vertical_counter >> 1); horizontal_drawing_latch_ |= vertical_drawing_latch_ && (horizontal_counter_ == registers_.first_column_location); if(pixel_line_cycle_ >= 0) ++pixel_line_cycle_; switch(pixel_line_cycle_) { case -1: if(horizontal_drawing_latch_) { pixel_line_cycle_ = 0; video_matrix_address_counter_ = base_video_matrix_address_counter_; } break; case 1: columns_this_line_ = registers_.number_of_columns; break; case 2: if(rows_this_field_ < 0) rows_this_field_ = registers_.number_of_rows; break; case 3: if(current_row_ < rows_this_field_) column_counter_ = 0; break; } uint16_t fetch_address = 0x1c; if(column_counter_ >= 0 && column_counter_ < columns_this_line_*2) { if(column_counter_&1) { fetch_address = registers_.character_cell_start_address + (character_code_*(registers_.tall_characters ? 16 : 8)) + current_character_row_; } else { fetch_address = uint16_t(registers_.video_matrix_start_address + video_matrix_address_counter_); ++video_matrix_address_counter_; if( (current_character_row_ == 15) || (current_character_row_ == 7 && !registers_.tall_characters) ) { base_video_matrix_address_counter_ = video_matrix_address_counter_; } } } fetch_address &= 0x3fff; uint8_t pixel_data; uint8_t colour_data; bus_handler_.perform_read(fetch_address, &pixel_data, &colour_data); // TODO: there should be a further two-cycle delay on pixels being output; the reverse bit should // divide the byte it is set for 3:1 and then continue as usual. // determine output state; colour burst and sync timing are currently a guess State this_state; if(horizontal_counter_ > timing_.cycles_per_line-4) this_state = State::ColourBurst; else if(horizontal_counter_ > timing_.cycles_per_line-7) this_state = State::Sync; else { this_state = (column_counter_ >= 0 && column_counter_ < columns_this_line_*2) ? State::Pixels : State::Border; } // apply vertical sync if( (vertical_counter_ < 3 && is_odd_frame()) || (registers_.interlaced && ( (vertical_counter_ == 0 && horizontal_counter_ > 32) || (vertical_counter_ == 1) || (vertical_counter_ == 2) || (vertical_counter_ == 3 && horizontal_counter_ <= 32) ) )) this_state = State::Sync; // update the CRT if(this_state != output_state_) { switch(output_state_) { case State::Sync: crt_.output_sync(cycles_in_state_ * 4); break; case State::ColourBurst: crt_.output_colour_burst(cycles_in_state_ * 4, (is_odd_frame_ || is_odd_line_) ? 128 : 0); break; case State::Border: crt_.output_level(cycles_in_state_ * 4, registers_.border_colour); break; case State::Pixels: crt_.output_data(cycles_in_state_ * 4); break; } output_state_ = this_state; cycles_in_state_ = 0; pixel_pointer = nullptr; if(output_state_ == State::Pixels) { pixel_pointer = reinterpret_cast(crt_.begin_data(260)); } } ++cycles_in_state_; if(output_state_ == State::Pixels) { // TODO: palette changes can happen within half-characters; the below needs to be divided. // Also: a perfect opportunity to rearrange this inner loop for no longer needing to be // two parts with a cooperative owner? if(column_counter_&1) { character_value_ = pixel_data; if(pixel_pointer) { const uint16_t cell_colour = colours_[character_colour_ & 0x7]; if(!(character_colour_&0x8)) { uint16_t colours[2]; if(registers_.invertedCells) { colours[0] = cell_colour; colours[1] = registers_.background_colour; } else { colours[0] = registers_.background_colour; colours[1] = cell_colour; } pixel_pointer[0] = colours[(character_value_ >> 7)&1]; pixel_pointer[1] = colours[(character_value_ >> 6)&1]; pixel_pointer[2] = colours[(character_value_ >> 5)&1]; pixel_pointer[3] = colours[(character_value_ >> 4)&1]; pixel_pointer[4] = colours[(character_value_ >> 3)&1]; pixel_pointer[5] = colours[(character_value_ >> 2)&1]; pixel_pointer[6] = colours[(character_value_ >> 1)&1]; pixel_pointer[7] = colours[(character_value_ >> 0)&1]; } else { const uint16_t colours[4] = { registers_.background_colour, registers_.border_colour, cell_colour, registers_.auxiliary_colour }; pixel_pointer[0] = pixel_pointer[1] = colours[(character_value_ >> 6)&3]; pixel_pointer[2] = pixel_pointer[3] = colours[(character_value_ >> 4)&3]; pixel_pointer[4] = pixel_pointer[5] = colours[(character_value_ >> 2)&3]; pixel_pointer[6] = pixel_pointer[7] = colours[(character_value_ >> 0)&3]; } pixel_pointer += 8; } } else { character_code_ = pixel_data; character_colour_ = colour_data; } } // Keep counting columns even if sync or the colour burst have interceded. if(column_counter_ >= 0 && column_counter_ < columns_this_line_*2) { ++column_counter_; } } } /*! Causes the 6560 to flush as much pending CRT and speaker communications as possible. */ inline void flush() { update_audio(); audio_queue_.perform(); } /*! Writes to a 6560 register. */ void write(int address, const uint8_t value) { address &= 0xf; registers_.direct_values[address] = value; switch(address) { case 0x0: registers_.interlaced = !!(value&0x80) && timing_.supports_interlacing; registers_.first_column_location = value & 0x7f; break; case 0x1: registers_.first_row_location = value; break; case 0x2: registers_.number_of_columns = value & 0x7f; registers_.video_matrix_start_address = uint16_t( (registers_.video_matrix_start_address & 0x3c00) | ((value & 0x80) << 2) ); break; case 0x3: registers_.number_of_rows = (value >> 1)&0x3f; registers_.tall_characters = !!(value&0x01); break; case 0x5: registers_.character_cell_start_address = uint16_t((value & 0x0f) << 10); registers_.video_matrix_start_address = uint16_t( (registers_.video_matrix_start_address & 0x0200) | ((value & 0xf0) << 6) ); break; case 0xa: case 0xb: case 0xc: case 0xd: update_audio(); audio_generator_.set_control(address - 0xa, value); break; case 0xe: update_audio(); registers_.auxiliary_colour = colours_[value >> 4]; audio_generator_.set_volume(value & 0xf); break; case 0xf: { const uint16_t new_border_colour = colours_[value & 0x07]; if(new_border_colour != registers_.border_colour) { if(output_state_ == State::Border) { crt_.output_level(cycles_in_state_ * 4, registers_.border_colour); cycles_in_state_ = 0; } registers_.border_colour = new_border_colour; } registers_.invertedCells = !((value >> 3)&1); registers_.background_colour = colours_[value >> 4]; } break; // TODO: the lightpen, etc default: break; } } /* Reads from a 6560 register. */ uint8_t read(int address) const { address &= 0xf; switch(address) { default: return registers_.direct_values[address]; case 0x03: return uint8_t(raster_value() << 7) | (registers_.direct_values[3] & 0x7f); case 0x04: return (raster_value() >> 1) & 0xff; } } private: BusHandler &bus_handler_; Outputs::CRT::CRT crt_; Concurrency::AsyncTaskQueue audio_queue_; AudioGenerator audio_generator_; Outputs::Speaker::PullLowpass speaker_; Cycles cycles_since_speaker_update_; void update_audio() { speaker_.run_for(audio_queue_, Cycles(cycles_since_speaker_update_.divide(Cycles(4)))); } // register state struct { bool interlaced = false, tall_characters = false; uint8_t first_column_location = 0, first_row_location = 0; uint8_t number_of_columns = 0, number_of_rows = 0; uint16_t character_cell_start_address = 0, video_matrix_start_address = 0; uint16_t border_colour = 0; uint16_t background_colour = 0; uint16_t auxiliary_colour = 0; bool invertedCells = false; uint8_t direct_values[16]{}; } registers_; // output state enum State { Sync, ColourBurst, Border, Pixels } output_state_ = State::Sync; int cycles_in_state_ = 0; // counters that cover an entire field int horizontal_counter_ = 0, vertical_counter_ = 0; int lines_this_field() const { // Necessary knowledge here: only the NTSC 6560 supports interlaced video. return registers_.interlaced ? (is_odd_frame_ ? 262 : 263) : timing_.lines_per_progressive_field; } int raster_value() const { const int bonus_line = (horizontal_counter_ + timing_.line_counter_increment_offset) / timing_.cycles_per_line; const int line = vertical_counter_ + bonus_line; const int final_line = lines_this_field(); if(line < final_line) return line; if(is_odd_frame()) { return (horizontal_counter_ >= timing_.final_line_increment_position) ? 0 : final_line - 1; } else { return line % final_line; } // Cf. http://www.sleepingelephant.com/ipw-web/bulletin/bb/viewtopic.php?f=14&t=7237&start=15#p80737 } bool is_odd_frame() const { return is_odd_frame_ || !registers_.interlaced; } // latches dictating start and length of drawing bool vertical_drawing_latch_ = false, horizontal_drawing_latch_ = false; int rows_this_field_ = 0, columns_this_line_ = 0; // current drawing position counter int pixel_line_cycle_ = 0, column_counter_ = 0; int current_row_ = 0; uint16_t current_character_row_ = 0; uint16_t video_matrix_address_counter_ = 0, base_video_matrix_address_counter_ = 0; // data latched from the bus uint8_t character_code_ = 0, character_colour_ = 0, character_value_ = 0; bool is_odd_frame_ = false, is_odd_line_ = false; // lookup table from 6560 colour index to appropriate PAL/NTSC value uint16_t colours_[16] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; uint16_t *pixel_pointer = nullptr; struct { int cycles_per_line = 0; int line_counter_increment_offset = 0; int final_line_increment_position = 0; int lines_per_progressive_field = 0; bool supports_interlacing = 0; } timing_; OutputMode output_mode_ = OutputMode::NTSC; }; }