// // CRT.hpp // Clock Signal // // Created by Thomas Harte on 19/07/2015. // Copyright © 2015 Thomas Harte. All rights reserved. // #ifndef CRT_cpp #define CRT_cpp #include #include #include #include #include "CRTFrame.h" namespace Outputs { class CRT; struct CRTFrameBuilder { CRTFrame frame; CRTFrameBuilder(int width, int height, int number_of_buffers, va_list buffer_sizes); ~CRTFrameBuilder(); private: std::vector _all_runs; void reset(); void complete(); uint16_t *get_next_run(); friend CRT; void allocate_write_area(int required_length); uint8_t *get_write_target_for_buffer(int buffer); // a pointer to the section of content buffer currently being // returned and to where the next section will begin int _next_write_x_position, _next_write_y_position; int _write_x_position, _write_y_position; int _write_target_pointer; }; static const int kCRTNumberOfFrames = 3; class CRT { public: CRT(int cycles_per_line, int height_of_display, int number_of_buffers, ...); ~CRT(); void output_sync(int number_of_cycles); void output_blank(int number_of_cycles); void output_level(int number_of_cycles, const char *type); void output_data(int number_of_cycles, const char *type); class CRTDelegate { public: virtual void crt_did_end_frame(CRT *crt, CRTFrame *frame) = 0; }; void set_delegate(CRTDelegate *delegate); void return_frame(); void allocate_write_area(int required_length); uint8_t *get_write_target_for_buffer(int buffer); private: // the incoming clock lengths will be multiplied by something to give at least 1000 // sample points per line int _time_multiplier; // fundamental creator-specified properties int _cycles_per_line; int _height_of_display; // properties directly derived from there int _hsync_error_window; // the permitted window around the expected sync position in which a sync pulse will be recognised; calculated once at init // the current scanning position struct Vector { uint32_t x, y; } _rasterPosition, _scanSpeed, _retraceSpeed; uint32_t _widths[4][2]; // the run delegate and the triple buffer CRTFrameBuilder *_frame_builders[kCRTNumberOfFrames]; CRTFrameBuilder *_current_frame_builder; int _frames_with_delegate; int _frame_read_pointer; CRTDelegate *_delegate; // outer elements of sync separation bool _is_receiving_sync; // true if the CRT is currently receiving sync (i.e. this is for edge triggering of horizontal sync) bool _did_detect_hsync; // true if horizontal sync was detected during this scanline (so, this affects flywheel adjustments) int _sync_capacitor_charge_level; // this charges up during times of sync and depletes otherwise; needs to hit a required threshold to trigger a vertical sync int _sync_capacitor_charge_threshold; // this charges up during times of sync and depletes otherwise; needs to hit a required threshold to trigger a vertical sync int _vretrace_counter; // a down-counter for time during a vertical retrace int _vertical_retrace_time; // components of the flywheel sync int _horizontal_counter; // time run since the _start_ of the last horizontal sync int _expected_next_hsync; // our current expection of when the next horizontal sync will be encountered (which implies current flywheel velocity) int _horizontal_retrace_time; bool _is_in_hsync; // true for the duration of a horizontal sync — used to determine beam running direction and speed // the outer entry point for dispatching output_sync, output_blank, output_level and output_data enum Type { Sync, Level, Data, Blank } type; void advance_cycles(int number_of_cycles, bool hsync_requested, bool vsync_charging, Type type, const char *data_type); // the inner entry point that determines whether and when the next sync event will occur within // the current output window enum SyncEvent { None, StartHSync, EndHSync, StartVSync, EndVSync }; SyncEvent next_vertical_sync_event(bool vsync_is_charging, int cycles_to_run_for, int *cycles_advanced); SyncEvent next_horizontal_sync_event(bool hsync_is_requested, int cycles_to_run_for, int *cycles_advanced); }; } #endif /* CRT_cpp */