// // MacintoshDoubleDensityDrive.cpp // Clock Signal // // Created by Thomas Harte on 10/07/2019. // Copyright © 2019 Thomas Harte. All rights reserved. // #include "MacintoshDoubleDensityDrive.hpp" using namespace Apple::Macintosh; DoubleDensityDrive::DoubleDensityDrive(int input_clock_rate, bool is_800k) : IWMDrive(input_clock_rate, is_800k ? 2 : 1), // Only 800kb drives are double sided. is_800k_(is_800k) { // Start with a valid rotation speed. if(is_800k) { set_rotation_speed(393.3807f); } } // MARK: - Speed Selection void DoubleDensityDrive::did_step(Storage::Disk::HeadPosition to_position) { // The 800kb drive automatically selects rotation speed as a function of // head position; the 400kb drive doesn't do so. if(is_800k_) { /* Numbers below cribbed from the Kryoflux forums; specifically: https://forum.kryoflux.com/viewtopic.php?t=1090 They can almost be worked out algorithmically, since the point is to produce an almost-constant value for speed*(number of sectors), and: 393.3807 * 12 = 4720.5684 429.1723 * 11 = 4720.895421 472.1435 * 10 = 4721.435 524.5672 * 9 = 4721.1048 590.1098 * 8 = 4720.8784 So 4721 / (number of sectors per track in zone) would give essentially the same results. */ const int zone = to_position.as_int() >> 4; switch(zone) { case 0: set_rotation_speed(393.3807f); break; case 1: set_rotation_speed(429.1723f); break; case 2: set_rotation_speed(472.1435f); break; case 3: set_rotation_speed(524.5672f); break; default: set_rotation_speed(590.1098f); break; } } } // MARK: - Control input/output. void DoubleDensityDrive::set_enabled(bool) { } void DoubleDensityDrive::set_control_lines(int lines) { const auto old_state = control_state_; control_state_ = lines; // Catch low-to-high LSTRB transitions. if((old_state ^ control_state_) & control_state_ & Line::LSTRB) { switch(control_state_ & (Line::CA1 | Line::CA0 | Line::SEL)) { default: // LOG("Unhandled LSTRB"); break; case 0: // LOG("LSTRB Set stepping direction: " << int(state_ & CA2)); step_direction_ = (control_state_ & Line::CA2) ? -1 : 1; break; case Line::CA1: // LOG("LSTRB Motor"); set_motor_on(!(control_state_ & Line::CA2)); break; case Line::CA0: // LOG("LSTRB Step"); step(Storage::Disk::HeadPosition(step_direction_)); break; case Line::CA1 | Line::CA0: // LOG("LSTRB Eject disk"); set_disk(nullptr); break; } } } bool DoubleDensityDrive::read() { switch(control_state_ & (CA2 | CA1 | CA0 | SEL)) { default: // LOG("unknown)"); return false; // Possible other meanings: // B = ready (0 = ready) // // {CA1,CA0,SEL,CA2} case 0: // Head step direction. // (0 = inward) // LOG("head step direction)"); return step_direction_ <= 0; case SEL: // Disk in place. // (0 = disk present) // LOG("disk in place)"); return !has_disk(); case CA0: // Disk head step completed. // (0 = still stepping) // LOG("head stepping)"); return true; case CA0|SEL: // Disk locked. // (0 = write protected) // LOG("disk locked)"); return !get_is_read_only(); case CA1: // Disk motor running. // (0 = motor on) // LOG("disk motor running)"); return !get_motor_on(); case CA1|SEL: // Head at track 0. // (0 = at track 0) // LOG("head at track 0)"); return !get_is_track_zero(); case CA1|CA0|SEL: // Tachometer. // (arbitrary) return get_tachometer(); case CA2: // Read data, lower head. // LOG("data, lower head)\n"); set_head(0); return false;; case CA2|SEL: // Read data, upper head. // LOG("data, upper head)\n"); set_head(1); return false; case CA2|CA1: // Single- or double-sided drive. // (0 = single sided) // LOG("single- or double-sided drive)"); return get_head_count() != 1; case CA2|CA1|CA0: // "Present/HD" (per the Mac Plus ROM) // (0 = ??HD??) // LOG("present/HD)"); return false; case CA2|CA1|CA0|SEL: // Drive installed. // (0 = present, 1 = missing) // LOG("drive installed)"); return false; } } void DoubleDensityDrive::write(bool value) { }