// // CRT.cpp // Clock Signal // // Created by Thomas Harte on 19/07/2015. // Copyright © 2015 Thomas Harte. All rights reserved. // #include "CRT.hpp" #include "CRTOpenGL.hpp" #include #include using namespace Outputs; void CRT::set_new_timing(unsigned int cycles_per_line, unsigned int height_of_display, ColourSpace colour_space, unsigned int colour_cycle_numerator, unsigned int colour_cycle_denominator) { _colour_space = colour_space; _colour_cycle_numerator = colour_cycle_numerator; _colour_cycle_denominator = colour_cycle_denominator; const unsigned int syncCapacityLineChargeThreshold = 3; const unsigned int millisecondsHorizontalRetraceTime = 7; // source: Dictionary of Video and Television Technology, p. 234 const unsigned int scanlinesVerticalRetraceTime = 10; // source: ibid // To quote: // // "retrace interval; The interval of time for the return of the blanked scanning beam of // a TV picture tube or camera tube to the starting point of a line or field. It is about 7 µs // for horizontal retrace and 500 to 750 µs for vertical retrace in NTSC and PAL TV." _time_multiplier = (2000 + cycles_per_line - 1) / cycles_per_line; // store fundamental display configuration properties _height_of_display = height_of_display; _cycles_per_line = cycles_per_line * _time_multiplier; // generate timing values implied by the given arbuments _sync_capacitor_charge_threshold = ((syncCapacityLineChargeThreshold * _cycles_per_line) * 50) >> 7; // create the two flywheels _horizontal_flywheel = std::unique_ptr(new Outputs::Flywheel(_cycles_per_line, (millisecondsHorizontalRetraceTime * _cycles_per_line) >> 6)); _vertical_flywheel = std::unique_ptr(new Outputs::Flywheel(_cycles_per_line * height_of_display, scanlinesVerticalRetraceTime * _cycles_per_line)); // figure out the divisor necessary to get the horizontal flywheel into a 16-bit range unsigned int real_clock_scan_period = (_cycles_per_line * height_of_display) / (_time_multiplier * _common_output_divisor); _vertical_flywheel_output_divider = (uint16_t)(ceilf(real_clock_scan_period / 65536.0f) * (_time_multiplier * _common_output_divisor)); } void CRT::set_new_display_type(unsigned int cycles_per_line, DisplayType displayType) { switch(displayType) { case DisplayType::PAL50: set_new_timing(cycles_per_line, 312, ColourSpace::YUV, 1135, 4); break; case DisplayType::NTSC60: set_new_timing(cycles_per_line, 262, ColourSpace::YIQ, 545, 2); break; } } void CRT::allocate_buffers(unsigned int number, va_list sizes) { _run_builders = new CRTRunBuilder *[kCRTNumberOfFields]; for(int builder = 0; builder < kCRTNumberOfFields; builder++) { _run_builders[builder] = new CRTRunBuilder(kCRTOutputVertexSize); } _composite_src_runs = std::unique_ptr(new CRTRunBuilder(23)); va_list va; va_copy(va, sizes); _buffer_builder = std::unique_ptr(new CRTInputBufferBuilder(number, va)); va_end(va); } CRT::CRT(unsigned int common_output_divisor) : _next_scan(0), _run_write_pointer(0), _sync_capacitor_charge_level(0), _is_receiving_sync(false), _output_mutex(new std::mutex), _visible_area(Rect(0, 0, 1, 1)), _sync_period(0), _common_output_divisor(common_output_divisor) { construct_openGL(); } CRT::~CRT() { for(int builder = 0; builder < kCRTNumberOfFields; builder++) { delete _run_builders[builder]; } delete[] _run_builders; destruct_openGL(); } CRT::CRT(unsigned int cycles_per_line, unsigned int common_output_divisor, unsigned int height_of_display, ColourSpace colour_space, unsigned int colour_cycle_numerator, unsigned int colour_cycle_denominator, unsigned int number_of_buffers, ...) : CRT(common_output_divisor) { set_new_timing(cycles_per_line, height_of_display, colour_space, colour_cycle_numerator, colour_cycle_denominator); va_list buffer_sizes; va_start(buffer_sizes, number_of_buffers); allocate_buffers(number_of_buffers, buffer_sizes); va_end(buffer_sizes); } CRT::CRT(unsigned int cycles_per_line, unsigned int common_output_divisor, DisplayType displayType, unsigned int number_of_buffers, ...) : CRT(common_output_divisor) { set_new_display_type(cycles_per_line, displayType); va_list buffer_sizes; va_start(buffer_sizes, number_of_buffers); allocate_buffers(number_of_buffers, buffer_sizes); va_end(buffer_sizes); } #pragma mark - Sync loop Flywheel::SyncEvent CRT::get_next_vertical_sync_event(bool vsync_is_requested, unsigned int cycles_to_run_for, unsigned int *cycles_advanced) { return _vertical_flywheel->get_next_event_in_period(vsync_is_requested, cycles_to_run_for, cycles_advanced); } Flywheel::SyncEvent CRT::get_next_horizontal_sync_event(bool hsync_is_requested, unsigned int cycles_to_run_for, unsigned int *cycles_advanced) { return _horizontal_flywheel->get_next_event_in_period(hsync_is_requested, cycles_to_run_for, cycles_advanced); } void CRT::advance_cycles(unsigned int number_of_cycles, unsigned int source_divider, bool hsync_requested, bool vsync_requested, const bool vsync_charging, const Type type, uint16_t tex_x, uint16_t tex_y) { number_of_cycles *= _time_multiplier; bool is_output_run = ((type == Type::Level) || (type == Type::Data)); while(number_of_cycles) { unsigned int time_until_vertical_sync_event, time_until_horizontal_sync_event; Flywheel::SyncEvent next_vertical_sync_event = get_next_vertical_sync_event(vsync_requested, number_of_cycles, &time_until_vertical_sync_event); Flywheel::SyncEvent next_horizontal_sync_event = get_next_horizontal_sync_event(hsync_requested, time_until_vertical_sync_event, &time_until_horizontal_sync_event); // get the next sync event and its timing; hsync request is instantaneous (being edge triggered) so // set it to false for the next run through this loop (if any) unsigned int next_run_length = std::min(time_until_vertical_sync_event, time_until_horizontal_sync_event); hsync_requested = false; vsync_requested = false; uint8_t *next_run = ((is_output_run && next_run_length) && !_horizontal_flywheel->is_in_retrace() && !_vertical_flywheel->is_in_retrace()) ? _run_builders[_run_write_pointer]->get_next_run() : nullptr; #define position_x(v) (*(uint16_t *)&next_run[kCRTOutputVertexSize*v + kCRTOutputVertexOffsetOfPosition + 0]) #define position_y(v) (*(uint16_t *)&next_run[kCRTOutputVertexSize*v + kCRTOutputVertexOffsetOfPosition + 2]) #define tex_x(v) (*(uint16_t *)&next_run[kCRTOutputVertexSize*v + kCRTOutputVertexOffsetOfTexCoord + 0]) #define tex_y(v) (*(uint16_t *)&next_run[kCRTOutputVertexSize*v + kCRTOutputVertexOffsetOfTexCoord + 2]) #define lateral(v) next_run[kCRTOutputVertexSize*v + kCRTOutputVertexOffsetOfLateral] #define timestamp(v) (*(uint32_t *)&next_run[kCRTOutputVertexSize*v + kCRTOutputVertexOffsetOfTimestamp]) // Vertex output is arranged as: // // [0/4] 3 // // 1 [2/5] if(next_run) { // set the type, initial raster position and type of this run position_x(0) = position_x(1) = position_x(4) = (uint16_t)_horizontal_flywheel->get_current_output_position(); position_y(0) = position_y(1) = position_y(4) = (uint16_t)(_vertical_flywheel->get_current_output_position() / _vertical_flywheel_output_divider); timestamp(0) = timestamp(1) = timestamp(4) = _run_builders[_run_write_pointer]->duration; tex_x(0) = tex_x(1) = tex_x(4) = tex_x; // these things are constants across the line so just throw them out now tex_y(0) = tex_y(4) = tex_y(1) = tex_y(2) = tex_y(3) = tex_y(5) = tex_y; lateral(0) = lateral(4) = lateral(5) = 0; lateral(1) = lateral(2) = lateral(3) = 1; } // decrement the number of cycles left to run for and increment the // horizontal counter appropriately number_of_cycles -= next_run_length; _run_builders[_run_write_pointer]->duration += next_run_length; // either charge or deplete the vertical retrace capacitor (making sure it stops at 0) if (vsync_charging && !_vertical_flywheel->is_in_retrace()) _sync_capacitor_charge_level += next_run_length; else _sync_capacitor_charge_level = std::max(_sync_capacitor_charge_level - (int)next_run_length, 0); // react to the incoming event... _horizontal_flywheel->apply_event(next_run_length, (next_run_length == time_until_horizontal_sync_event) ? next_horizontal_sync_event : Flywheel::SyncEvent::None); _vertical_flywheel->apply_event(next_run_length, (next_run_length == time_until_vertical_sync_event) ? next_vertical_sync_event : Flywheel::SyncEvent::None); if(next_run) { // store the final raster position position_x(2) = position_x(3) = position_x(5) = (uint16_t)_horizontal_flywheel->get_current_output_position(); position_y(2) = position_y(3) = position_y(5) = (uint16_t)(_vertical_flywheel->get_current_output_position() / _vertical_flywheel_output_divider); timestamp(2) = timestamp(3) = timestamp(5) = _run_builders[_run_write_pointer]->duration; // if this is a data run then advance the buffer pointer if(type == Type::Data && source_divider) tex_x += next_run_length / (_time_multiplier * source_divider); // if this is a data or level run then store the end point tex_x(2) = tex_x(3) = tex_x(5) = tex_x; } if(next_run_length == time_until_vertical_sync_event && next_vertical_sync_event == Flywheel::SyncEvent::EndRetrace) { // TODO: how to communicate did_detect_vsync? Bring the delegate back? // _delegate->crt_did_end_frame(this, &_current_frame_builder->frame, _did_detect_vsync); _run_write_pointer = (_run_write_pointer + 1)%kCRTNumberOfFields; _run_builders[_run_write_pointer]->reset(); } } } #pragma mark - stream feeding methods void CRT::output_scan() { // _next_scan ^= 1; Scan *scan = &_scans[_next_scan]; bool this_is_sync = (scan->type == Type::Sync); bool is_trailing_edge = (_is_receiving_sync && !this_is_sync); bool hsync_requested = is_trailing_edge && (_sync_period < (_horizontal_flywheel->get_scan_period() >> 2)); bool vsync_requested = is_trailing_edge && (_sync_capacitor_charge_level >= _sync_capacitor_charge_threshold); _is_receiving_sync = this_is_sync; _sync_period = _is_receiving_sync ? (_sync_period + scan->number_of_cycles) : 0; advance_cycles(scan->number_of_cycles, scan->source_divider, hsync_requested, vsync_requested, this_is_sync, scan->type, scan->tex_x, scan->tex_y); } /* These all merely channel into advance_cycles, supplying appropriate arguments */ void CRT::output_sync(unsigned int number_of_cycles) { _output_mutex->lock(); _scans[_next_scan].type = Type::Sync; _scans[_next_scan].number_of_cycles = number_of_cycles; output_scan(); _output_mutex->unlock(); } void CRT::output_blank(unsigned int number_of_cycles) { _output_mutex->lock(); _scans[_next_scan].type = Type::Blank; _scans[_next_scan].number_of_cycles = number_of_cycles; output_scan(); _output_mutex->unlock(); } void CRT::output_level(unsigned int number_of_cycles) { _output_mutex->lock(); _scans[_next_scan].type = Type::Level; _scans[_next_scan].number_of_cycles = number_of_cycles; _scans[_next_scan].tex_x = _buffer_builder->_write_x_position; _scans[_next_scan].tex_y = _buffer_builder->_write_y_position; output_scan(); _output_mutex->unlock(); } void CRT::output_colour_burst(unsigned int number_of_cycles, uint8_t phase, uint8_t magnitude) { _output_mutex->lock(); _scans[_next_scan].type = Type::ColourBurst; _scans[_next_scan].number_of_cycles = number_of_cycles; _scans[_next_scan].phase = phase; _scans[_next_scan].magnitude = magnitude; output_scan(); _output_mutex->unlock(); } void CRT::output_data(unsigned int number_of_cycles, unsigned int source_divider) { _output_mutex->lock(); _buffer_builder->reduce_previous_allocation_to(number_of_cycles / source_divider); _scans[_next_scan].type = Type::Data; _scans[_next_scan].number_of_cycles = number_of_cycles; _scans[_next_scan].tex_x = _buffer_builder->_write_x_position; _scans[_next_scan].tex_y = _buffer_builder->_write_y_position; _scans[_next_scan].source_divider = source_divider; output_scan(); _output_mutex->unlock(); } #pragma mark - Buffer supply void CRT::allocate_write_area(size_t required_length) { _output_mutex->lock(); _buffer_builder->allocate_write_area(required_length); _output_mutex->unlock(); } uint8_t *CRT::get_write_target_for_buffer(int buffer) { return _buffer_builder->get_write_target_for_buffer(buffer); }