// // 9918Base.hpp // Clock Signal // // Created by Thomas Harte on 14/12/2017. // Copyright 2017 Thomas Harte. All rights reserved. // #ifndef TMS9918Base_hpp #define TMS9918Base_hpp #include "ClockConverter.hpp" #include "../../../ClockReceiver/ClockReceiver.hpp" #include "../../../Numeric/BitReverse.hpp" #include "../../../Outputs/CRT/CRT.hpp" #include "PersonalityTraits.hpp" #include #include #include #include #include #include namespace TI { namespace TMS { // Additional properties that correlate with personality. constexpr size_t memory_size(Personality p) { switch(p) { case TI::TMS::TMS9918A: case TI::TMS::SMSVDP: case TI::TMS::SMS2VDP: case TI::TMS::GGVDP: return 16 * 1024; case TI::TMS::MDVDP: return 64 * 1024; case TI::TMS::V9938: return 128 * 1024; case TI::TMS::V9958: return 192 * 1024; } } // The screen mode is a necessary predecessor to picking the line mode, // which is the thing latched per line. enum class ScreenMode { Blank, Text, MultiColour, ColouredText, Graphics, SMSMode4 }; enum class LineMode { Text, Character, Refresh, SMS }; enum class MemoryAccess { Read, Write, None }; // Temporary buffers collect a representation of each line prior to pixel serialisation. struct LineBuffer { // The line mode describes the proper timing diagram for this line. LineMode line_mode = LineMode::Text; // Holds the horizontal scroll position to apply to this line; // of those VDPs currently implemented, affects the Master System only. uint8_t latched_horizontal_scroll = 0; // The names array holds pattern names, as an offset into memory, and // potentially flags also. struct { size_t offset = 0; uint8_t flags = 0; } names[40]; // The patterns array holds tile patterns, corresponding 1:1 with names. // Four bytes per pattern is the maximum required by any // currently-implemented VDP. uint8_t patterns[40][4]; /* Horizontal layout (on a 342-cycle clock): 15 cycles right border 58 cycles blanking & sync 13 cycles left border ... i.e. to cycle 86, then: border up to first_pixel_output_column; pixels up to next_border_column; border up to the end. e.g. standard 256-pixel modes will want to set first_pixel_output_column = 86, next_border_column = 342. */ int first_pixel_output_column = 94; int next_border_column = 334; // An active sprite is one that has been selected for composition onto // this line. struct ActiveSprite { int index = 0; // The original in-table index of this sprite. int row = 0; // The row of the sprite that should be drawn. int x = 0; // The sprite's x position on screen. uint8_t image[4]; // Up to four bytes of image information. int shift_position = 0; // An offset representing how much of the image information has already been drawn. } active_sprites[8]; int active_sprite_slot = 0; // A pointer to the slot into which a new active sprite will be deposited, if required. bool sprites_stopped = false; // A special TMS feature is that a sentinel value can be used to prevent any further sprites // being evaluated for display. This flag determines whether the sentinel has yet been reached. void reset_sprite_collection(); }; struct LineBufferPointer { int row, column; }; constexpr uint8_t StatusInterrupt = 0x80; constexpr uint8_t StatusSpriteOverflow = 0x40; constexpr int StatusSpriteCollisionShift = 5; constexpr uint8_t StatusSpriteCollision = 0x20; template struct Base { Base(); static constexpr int output_lag = 11; // i.e. pixel output will occur 11 cycles // after corresponding data read. static constexpr uint32_t palette_pack(uint8_t r, uint8_t g, uint8_t b) { #if TARGET_RT_BIG_ENDIAN return uint32_t((r << 24) | (g << 16) | (b << 8)); #else return uint32_t((b << 16) | (g << 8) | r); #endif } // The default TMS palette. static constexpr std::array palette { palette_pack(0, 0, 0), palette_pack(0, 0, 0), palette_pack(33, 200, 66), palette_pack(94, 220, 120), palette_pack(84, 85, 237), palette_pack(125, 118, 252), palette_pack(212, 82, 77), palette_pack(66, 235, 245), palette_pack(252, 85, 84), palette_pack(255, 121, 120), palette_pack(212, 193, 84), palette_pack(230, 206, 128), palette_pack(33, 176, 59), palette_pack(201, 91, 186), palette_pack(204, 204, 204), palette_pack(255, 255, 255) }; Outputs::CRT::CRT crt_; TVStandard tv_standard_ = TVStandard::NTSC; // Personality-specific metrics and converters. ClockConverter clock_converter_; // This VDP's DRAM. std::array ram_; // State of the DRAM/CRAM-access mechanism. uint16_t ram_pointer_ = 0; uint8_t read_ahead_buffer_ = 0; MemoryAccess queued_access_ = MemoryAccess::None; int cycles_until_access_ = 0; int minimum_access_column_ = 0; // The main status register. uint8_t status_ = 0; // Current state of programmer input. bool write_phase_ = false; // Determines whether the VDP is expecting the low or high byte of a write. uint8_t low_write_ = 0; // Buffers the low byte of a write. // Various programmable flags. bool mode1_enable_ = false; bool mode2_enable_ = false; bool mode3_enable_ = false; bool blank_display_ = false; bool sprites_16x16_ = false; bool sprites_magnified_ = false; bool generate_interrupts_ = false; int sprite_height_ = 8; // Programmer-specified addresses. size_t pattern_name_address_ = 0; // i.e. address of the tile map. size_t colour_table_address_ = 0; // address of the colour map (if applicable). size_t pattern_generator_table_address_ = 0; // address of the tile contents. size_t sprite_attribute_table_address_ = 0; // address of the sprite list. size_t sprite_generator_table_address_ = 0; // address of the sprite contents. // Default colours. uint8_t text_colour_ = 0; uint8_t background_colour_ = 0; // Internal mechanisms for position tracking. int latched_column_ = 0; // A struct to contain timing information that is a function of the current mode. struct { /* Vertical layout: Lines 0 to [pixel_lines]: standard data fetch and drawing will occur. ... to [first_vsync_line]: refresh fetches will occur and border will be output. .. to [2.5 or 3 lines later]: vertical sync is output. ... to [total lines - 1]: refresh fetches will occur and border will be output. ... for one line: standard data fetch will occur, without drawing. */ int total_lines = 262; int pixel_lines = 192; int first_vsync_line = 227; // Maximum number of sprite slots to populate; // if sprites beyond this number should be visible // then the appropriate status information will be set. int maximum_visible_sprites = 4; // Set the position, in cycles, of the two interrupts, // within a line. struct { int column = 4; int row = 193; } end_of_frame_interrupt_position; int line_interrupt_position = -1; // Enables or disabled the recognition of the sprite // list terminator, and sets the terminator value. bool allow_sprite_terminator = true; uint8_t sprite_terminator = 0xd0; } mode_timing_; uint8_t line_interrupt_target = 0xff; uint8_t line_interrupt_counter = 0; bool enable_line_interrupts_ = false; bool line_interrupt_pending_ = false; ScreenMode screen_mode_; LineBuffer line_buffers_[313]; void posit_sprite(LineBuffer &buffer, int sprite_number, int sprite_y, int screen_row); // There is a delay between reading into the line buffer and outputting from there to the screen. That delay // is observeable because reading time affects availability of memory accesses and therefore time in which // to update sprites and tiles, but writing time affects when the palette is used and when the collision flag // may end up being set. So the two processes are slightly decoupled. The end of reading one line may overlap // with the beginning of writing the next, hence the two separate line buffers. LineBufferPointer read_pointer_, write_pointer_; // The SMS VDP has a programmer-set colour palette, with a dedicated patch of RAM. But the RAM is only exactly // fast enough for the pixel clock. So when the programmer writes to it, that causes a one-pixel glitch; there // isn't the bandwidth for the read both write to occur simultaneously. The following buffer therefore keeps // track of pending collisions, for visual reproduction. struct CRAMDot { LineBufferPointer location; uint32_t value; }; std::vector upcoming_cram_dots_; // Extra information that affects the Master System output mode. struct { // Programmer-set flags. bool vertical_scroll_lock = false; bool horizontal_scroll_lock = false; bool hide_left_column = false; bool shift_sprites_8px_left = false; bool mode4_enable = false; uint8_t horizontal_scroll = 0; uint8_t vertical_scroll = 0; // The Master System's additional colour RAM. uint32_t colour_ram[32]; bool cram_is_selected = false; // Holds the vertical scroll position for this frame; this is latched // once and cannot dynamically be changed until the next frame. uint8_t latched_vertical_scroll = 0; size_t pattern_name_address; size_t sprite_attribute_table_address; size_t sprite_generator_table_address; } master_system_; ScreenMode current_screen_mode() const { if(blank_display_) { return ScreenMode::Blank; } if constexpr (is_sega_vdp(personality)) { if(master_system_.mode4_enable) { return ScreenMode::SMSMode4; } } if(!mode1_enable_ && !mode2_enable_ && !mode3_enable_) { return ScreenMode::ColouredText; } if(mode1_enable_ && !mode2_enable_ && !mode3_enable_) { return ScreenMode::Text; } if(!mode1_enable_ && mode2_enable_ && !mode3_enable_) { return ScreenMode::Graphics; } if(!mode1_enable_ && !mode2_enable_ && mode3_enable_) { return ScreenMode::MultiColour; } // TODO: undocumented TMS modes. return ScreenMode::Blank; } void do_external_slot(int access_column) { // Don't do anything if the required time for the access to become executable // has yet to pass. if(access_column < minimum_access_column_) { return; } switch(queued_access_) { default: return; case MemoryAccess::Write: if constexpr (is_sega_vdp(personality)) { if(master_system_.cram_is_selected) { // Adjust the palette. In a Master System blue has a slightly different // scale; cf. https://www.retrorgb.com/sega-master-system-non-linear-blue-channel-findings.html constexpr uint8_t rg_scale[] = {0, 85, 170, 255}; constexpr uint8_t b_scale[] = {0, 104, 170, 255}; master_system_.colour_ram[ram_pointer_ & 0x1f] = palette_pack( rg_scale[(read_ahead_buffer_ >> 0) & 3], rg_scale[(read_ahead_buffer_ >> 2) & 3], b_scale[(read_ahead_buffer_ >> 4) & 3] ); // Schedule a CRAM dot; this is scheduled for wherever it should appear // on screen. So it's wherever the output stream would be now. Which // is output_lag cycles ago from the point of view of the input stream. CRAMDot &dot = upcoming_cram_dots_.emplace_back(); dot.location.column = write_pointer_.column - output_lag; dot.location.row = write_pointer_.row; // Handle before this row conditionally; then handle after (or, more realistically, // exactly at the end of) naturally. if(dot.location.column < 0) { --dot.location.row; dot.location.column += 342; } dot.location.row += dot.location.column / 342; dot.location.column %= 342; dot.value = master_system_.colour_ram[ram_pointer_ & 0x1f]; break; } } ram_[ram_pointer_ & 16383] = read_ahead_buffer_; break; case MemoryAccess::Read: read_ahead_buffer_ = ram_[ram_pointer_ & 16383]; break; } ++ram_pointer_; queued_access_ = MemoryAccess::None; } // Various fetchers. template void fetch_tms_refresh(int start, int end); template void fetch_tms_text(int start, int end); template void fetch_tms_character(int start, int end); template void fetch_yamaha_refresh(int start, int end); template void fetch_yamaha_no_sprites(int start, int end); template void fetch_yamaha_sprites(int start, int end); template void fetch_sms(int start, int end); // A helper function to output the current border colour for // the number of cycles supplied. void output_border(int cycles, uint32_t cram_dot); // Output serialisation state. uint32_t *pixel_target_ = nullptr, *pixel_origin_ = nullptr; bool asked_for_write_area_ = false; // Output serialisers. void draw_tms_character(int start, int end); void draw_tms_text(int start, int end); void draw_sms(int start, int end, uint32_t cram_dot); }; #include "Fetch.hpp" #include "Draw.hpp" } } #endif /* TMS9918Base_hpp */