// // Audio.cpp // Clock Signal // // Created by Thomas Harte on 09/11/2021. // Copyright © 2021 Thomas Harte. All rights reserved. // #include "Audio.hpp" #include "Flags.hpp" #define LOG_PREFIX "[Audio] " #include "../../Outputs/Log.hpp" #include #include using namespace Amiga; Audio::Audio(Chipset &chipset, uint16_t *ram, size_t word_size, float output_rate) : DMADevice<4>(chipset, ram, word_size) { // Mark all buffers as available. for(auto &flag: buffer_available_) { flag.store(true, std::memory_order::memory_order_relaxed); } speaker_.set_input_rate(output_rate); speaker_.set_high_frequency_cutoff(7000.0f); } // MARK: - Exposed setters. void Audio::set_length(int channel, uint16_t length) { assert(channel >= 0 && channel < 4); channels_[channel].length = length; } void Audio::set_period(int channel, uint16_t period) { assert(channel >= 0 && channel < 4); channels_[channel].period = period; } void Audio::set_volume(int channel, uint16_t volume) { assert(channel >= 0 && channel < 4); channels_[channel].volume = (volume & 0x40) ? 64 : (volume & 0x3f); } void Audio::set_data(int channel, uint16_t data) { assert(channel >= 0 && channel < 4); channels_[channel].wants_data = false; channels_[channel].data = data; } void Audio::set_channel_enables(uint16_t enables) { channels_[0].dma_enabled = enables & 1; channels_[1].dma_enabled = enables & 2; channels_[2].dma_enabled = enables & 4; channels_[3].dma_enabled = enables & 8; } void Audio::set_modulation_flags(uint16_t flags) { channels_[3].attach_period = flags & 0x80; channels_[2].attach_period = flags & 0x40; channels_[1].attach_period = flags & 0x20; channels_[0].attach_period = flags & 0x10; channels_[3].attach_volume = flags & 0x08; channels_[2].attach_volume = flags & 0x04; channels_[1].attach_volume = flags & 0x02; channels_[0].attach_volume = flags & 0x01; } void Audio::set_interrupt_requests(uint16_t requests) { channels_[0].interrupt_pending = requests & uint16_t(InterruptFlag::AudioChannel0); channels_[1].interrupt_pending = requests & uint16_t(InterruptFlag::AudioChannel1); channels_[2].interrupt_pending = requests & uint16_t(InterruptFlag::AudioChannel2); channels_[3].interrupt_pending = requests & uint16_t(InterruptFlag::AudioChannel3); } // MARK: - DMA and mixing. bool Audio::advance_dma(int channel) { if(!channels_[channel].wants_data) { return false; } set_data(channel, ram_[channels_[channel].data_address & ram_mask_]); ++channels_[channel].data_address; if(channels_[channel].should_reload_address) { channels_[channel].data_address = pointer_[size_t(channel)]; channels_[channel].should_reload_address = false; } return true; } void Audio::output() { constexpr InterruptFlag interrupts[] = { InterruptFlag::AudioChannel0, InterruptFlag::AudioChannel1, InterruptFlag::AudioChannel2, InterruptFlag::AudioChannel3, }; for(int c = 0; c < 4; c++) { if(channels_[c].output()) { posit_interrupt(interrupts[c]); } } // Spin until the next buffer is available if just entering it for the first time. // Contention here should be essentially non-existent. if(!sample_pointer_) { while(!buffer_available_[buffer_pointer_].load(std::memory_order::memory_order_relaxed)); } // Left. static_assert(std::tuple_size::value % 2 == 0); buffer_[buffer_pointer_][sample_pointer_] = int16_t( ( channels_[1].output_level * channels_[1].output_enabled + channels_[2].output_level * channels_[2].output_enabled ) << 7 ); // Right. buffer_[buffer_pointer_][sample_pointer_ + 1] = int16_t( ( channels_[0].output_level * channels_[0].output_enabled + channels_[3].output_level * channels_[3].output_enabled ) << 7 ); sample_pointer_ += 2; if(sample_pointer_ == buffer_[buffer_pointer_].size()) { const auto &buffer = buffer_[buffer_pointer_]; auto &flag = buffer_available_[buffer_pointer_]; flag.store(false, std::memory_order::memory_order_release); queue_.enqueue([this, &buffer, &flag] { speaker_.push(buffer.data(), buffer.size() >> 1); flag.store(true, std::memory_order::memory_order_relaxed); }); buffer_pointer_ = (buffer_pointer_ + 1) % BufferCount; sample_pointer_ = 0; } } // MARK: - Per-channel logic. /* Big spiel on the state machine: Commodore's Hardware Rerefence Manual provides the audio subsystem's state machine, so I've just tried to reimplement it verbatim. It's depicted diagrammatically in the original source as a finite state automata, the below is my attempt to translate that into text. 000 State::Disabled: -> State::Disabled (000) if: N/A action: percntrld -> State::PlayingHigh (010) if: AUDDAT, and not AUDxON, and not AUDxIP action: volcntrld, percntrld, pbudld1, AUDxIR -> State::WaitingForDummyDMA (001) if: AUDxON action: lencntrld, AUDxDR, dmasen*, percntrld * NOTE: except for this case, dmasen is true only when LENFIN = 1. Also, AUDxDSR = (AUDxDR and dmasen). 001 State::WaitingForDummyDMA: -> State::WaitingForDummyDMA (001) if: N/A action: None -> State::Disabled (000) if: not AUDxON action: None -> State::WaitingForDMA (101) if: AUDxON, and AUDxDAT action: 1. AUDxIR 2. if not lenfin, then lencount 101 State::WaitingForDMA: -> State::WaitingForDMA (101) if: N/A action: None -> State:Disabled (000) if: not AUDxON action: None -> State::PlayingHigh (010) if: AUDxON, and AUDxDAT action: 1. volcntrld, percntrld, pbufid1 2. if napnav, then AUDxDR 010 State::PlayingHigh -> State::PlayingHigh (010) if: N/A action: percount, and penhi -> State::PlayingLow (011) if: perfin action: 1. if AUDxAP, then pubfid2 2. if AUDxAP and AUDxON, then AUDxDR 3. percntrld 4. if intreq2 and AUDxON and AUDxAP, then AUDxIR 5. if AUDxAP and AUDxON, then AUDxIR 6. if lenfin and AUDxON and AUDxDAT, then lencntrld 7. if (not lenfin) and AUDxON and AUDxDAT, then lencount 8. if lenfin and AUDxON and AUDxDAT, then intreq2 [note that 6–8 are shared with the Low -> High transition] 011 State::PlayingLow -> State::PlayingLow (011) if: N/A action: percount, and not penhi -> State::Disabled (000) if: perfin and not (AUDxON or not AUDxIP) action: None -> State::PlayingHigh (010) if: perfin and (AUDxON or not AUDxIP) action: 1. pbufld 2. percntrld 3. if AUDxON and napnav, then AUDxDR 4. if intreq2 and napnav and AUDxON, AUDxIR 5. if napnav and not AUDxON, AUDxIR 6. if lenfin and AUDxON and AUDxDAT, then lencntrld 7. if (not lenfin) and AUDxON and AUDxDAT, then lencount 8. if lenfin and AUDxON and AUDxDAT, then intreq2 [note that 6-8 are shared with the High -> Low transition] Definitions: AUDxON DMA on "x" indicates channel number (signal from DMACON). AUDxIP Audio interrupt pending (input to channel from interrupt circuitry). AUDxIR Audio interrupt request (output from channel to interrupt circuitry). intreq1 Interrupt request that combines with intreq2 to form AUDxIR. intreq2 Prepare for interrupt request. Request comes out after the next 011->010 transition in normal operation. AUDxDAT Audio data load signal. Loads 16 bits of data to audio channel. AUDxDR Audio DMA request to Agnus for one word of data. AUDxDSR Audio DMA request to Agnus to reset pointer to start of block. dmasen Restart request enable. percntrld Reload period counter from back-up latch typically written by processor with AUDxPER (can also be written by attach mode). percount Count period counter down one latch. perfin Period counter finished (value = 1). lencntrld Reload length counter from back-up latch. lencount Count length counter down one notch. lenfin Length counter finished (value = 1). volcntrld Reload volume counter from back-up latch. pbufld1 Load output buffer from holding latch written to by AUDxDAT. pbufld2 Like pbufld1, but only during 010->011 with attach period. AUDxAV Attach volume. Send data to volume latch of next channel instead of to D->A converter. AUDxAP Attach period. Send data to period latch of next channel instead of to the D->A converter. penhi Enable the high 8 bits of data to go to the D->A converter. napnav /AUDxAV * /AUDxAP + AUDxAV -- no attach stuff or else attach volume. Condition for normal DMA and interrupt requests. */ // // Non-action fallback transition and setter, plus specialised begin_state declarations. // template void Audio::Channel::begin_state() { state = end; } template <> void Audio::Channel::begin_state(); template <> void Audio::Channel::begin_state(); template < Audio::Channel::State begin, Audio::Channel::State end> bool Audio::Channel::transit() { begin_state(); return false; } // // Audio::Channel::State::Disabled // template <> bool Audio::Channel::transit< Audio::Channel::State::Disabled, Audio::Channel::State::WaitingForDummyDMA>() { begin_state(); period_counter = period; // i.e. percntrld length_counter = length; // i.e. lencntrld return false; } template <> bool Audio::Channel::transit< Audio::Channel::State::Disabled, Audio::Channel::State::PlayingHigh>() { begin_state(); data_latch = data; // i.e. pbufld1 wants_data = true; period_counter = period; // i.e. percntrld should_reload_address = true; // i.e. dmasen // TODO: volcntrld (see above). // Request an interrupt. return true; } template <> bool Audio::Channel::output() { if(!wants_data && !dma_enabled && !interrupt_pending) { return transit(); } // Test for DMA-style transition. if(dma_enabled) { return transit(); } return false; } // // Audio::Channel::State::WaitingForDummyDMA // template <> bool Audio::Channel::transit< Audio::Channel::State::WaitingForDummyDMA, Audio::Channel::State::WaitingForDMA>() { begin_state(); wants_data = true; if(length == 1) { length_counter = length; return true; } return false; } template <> bool Audio::Channel::output() { if(!dma_enabled) { return transit(); } if(dma_enabled && !wants_data) { return transit(); } return false; } // // Audio::Channel::State::WaitingForDMA // template <> bool Audio::Channel::transit< Audio::Channel::State::WaitingForDMA, Audio::Channel::State::PlayingHigh>() { begin_state(); data_latch = data; wants_data = true; period_counter = period; // i.e. percntrld return false; } template <> bool Audio::Channel::output() { if(!dma_enabled) { return transit(); } if(dma_enabled && !wants_data) { return transit(); } return false; } // // Audio::Channel::State::PlayingHigh // template <> bool Audio::Channel::transit< Audio::Channel::State::PlayingHigh, Audio::Channel::State::PlayingLow>() { begin_state(); // TODO: if AUDxAP, then pubfid2 // TODO: if AUDxAP and AUDxON, then AUDxDR period_counter = period; // i.e. percntrld // TODO: if intreq2 and AUDxON and AUDxAP, then AUDxIR // TODO: if AUDxAP and AUDxON, then AUDxIR // if lenfin and AUDxON and AUDxDAT, then lencntrld // if (not lenfin) and AUDxON and AUDxDAT, then lencount // if lenfin and AUDxON and AUDxDAT, then intreq2 if(dma_enabled && !wants_data) { --length_counter; if(!length_counter) { length_counter = length; will_request_interrupt = true; should_reload_address = true; // ??? } } return false; } template <> void Audio::Channel::begin_state() { state = Audio::Channel::State::PlayingHigh; // Output high byte. output_level = int8_t(data_latch >> 8); } template <> bool Audio::Channel::output() { -- period_counter; // This is a reasonable guess as to the exit condition for this node; // Commodore doesn't document. if(!period_counter) { return transit(); } return false; } // // Audio::Channel::State::PlayingLow // template <> bool Audio::Channel::transit< Audio::Channel::State::PlayingLow, Audio::Channel::State::PlayingHigh>() { begin_state(); // TODO: include napnav in tests period_counter = period; // i.e. percntrld if(!dma_enabled) { return true; } else { data_latch = data; // i.e. pbufld2 wants_data = true; // AUDxDR } if(dma_enabled && will_request_interrupt) { will_request_interrupt = false; return true; } return false; } template <> void Audio::Channel::begin_state() { state = Audio::Channel::State::PlayingLow; // Output low byte. output_level = int8_t(data_latch & 0xff); } template <> bool Audio::Channel::output() { -- period_counter; if(!period_counter) { const bool dma_or_no_interrupt = dma_enabled || !interrupt_pending; if(dma_or_no_interrupt) { return transit(); } else { return transit(); } } return false; } // // Dispatcher // bool Audio::Channel::output() { // Update pulse-width modulation. output_phase = (output_phase + 1) & 63; output_enabled |= !output_phase; output_enabled &= output_phase != volume; switch(state) { case State::Disabled: return output(); case State::WaitingForDummyDMA: return output(); case State::WaitingForDMA: return output(); case State::PlayingHigh: return output(); case State::PlayingLow: return output(); default: assert(false); break; } return false; }