// // ADB.cpp // Clock Signal // // Created by Thomas Harte on 31/10/2020. // Copyright © 2020 Thomas Harte. All rights reserved. // #include "ADB.hpp" #include #include #include // TEST. #include "../../../InstructionSets/M50740/Parser.hpp" #include "../../../InstructionSets/Disassembler.hpp" using namespace Apple::IIgs::ADB; namespace { // Flags affecting the CPU-visible status register. enum class CPUFlags: uint8_t { MouseDataFull = 0x80, MouseInterruptEnabled = 0x40, CommandDataIsValid = 0x20, CommandDataInterruptEnabled = 0x10, KeyboardDataFull = 0x08, KeyboardDataInterruptEnabled = 0x04, MouseXIsAvailable = 0x02, CommandRegisterFull = 0x01, }; // Flags affecting the microcontroller-visible register. enum class MicrocontrollerFlags: uint8_t { CommandRegisterFull = 0x40, }; } GLU::GLU() : executor_(*this) {} // MARK: - External interface. uint8_t GLU::get_keyboard_data() { // The classic Apple II serial keyboard register: // b7: key strobe. // b6–b0: ASCII code. return registers_[0]; } void GLU::clear_key_strobe() { // Clears the key strobe of the classic Apple II serial keyboard register. registers_[0] &= 0x7f; // ??? } uint8_t GLU::get_any_key_down() { // The Apple IIe check-for-any-key-down bit. return registers_[5]; } uint8_t GLU::get_mouse_data() { // Alternates between returning x and y values. // // b7: 1 = button is up; 0 = button is down. // b6: delta sign bit; 1 = negative. // b5–b0: mouse delta. return 0x80; // TODO. Should alternate between registers 2 and 3. } uint8_t GLU::get_modifier_status() { // b7: 1 = command key pressed; 0 = not. // b6: option key. // b5: 1 = modifier key latch has been updated, no key has been pressed; 0 = not. // b4: any numeric keypad key. // b3: a key is down. // b2: caps lock is pressed. // b1: control key. // b0: shift key. return registers_[6]; } uint8_t GLU::get_data() { // b0–2: number of data bytes to be returned. // b3: 1 = a valid service request is pending; 0 = no request pending. // b4: 1 = control, command and delete keys have been pressed simultaneously; 0 = they haven't. // b5: 1 = control, command and reset have all been pressed together; 0 = they haven't. // b6: 1 = ADB controller encountered an error and reset itself; 0 = no error. // b7: 1 = ADB has received a response from the addressed ADB device; 0 = no respone. // status_ &= ~(CPUFlags::CommandDataIsValid | CPUFlags::CommandRegisterFull); return registers_[7]; } uint8_t GLU::get_status() { // b7: 1 = mouse data register is full; 0 = empty. // b6: 1 = mouse interrupt is enabled. // b5: 1 = command/data has valid data. // b4: 1 = command/data interrupt is enabled. // b3: 1 = keyboard data is full. // b2: 1 = keyboard data interrupt is enabled. // b1: 1 = mouse x-data is available; 0 = y. // b0: 1 = command register is full (set when command is written); 0 = empty (cleared when data is read). return status_; } void GLU::set_command(uint8_t command) { registers_[1] = command; registers_[4] |= uint8_t(MicrocontrollerFlags::CommandRegisterFull); status_ |= uint8_t(CPUFlags::CommandRegisterFull); // printf("!!!%02x!!!\n", command); } void GLU::set_status(uint8_t status) { printf("TODO: set ADB status %02x\n", status); } // MARK: - Setup and run. void GLU::set_microcontroller_rom(const std::vector &rom) { executor_.set_rom(rom); // TEST invocation. /* InstructionSet::Disassembler disassembler; disassembler.disassemble(rom.data(), 0x1000, uint16_t(rom.size()), 0x1000); const auto instructions = disassembler.instructions(); const auto entry_points = disassembler.entry_points(); for(const auto &pair : instructions) { std::cout << std::hex << pair.first << "\t\t"; if(entry_points.find(pair.first) != entry_points.end()) { std::cout << "L" << pair.first << "\t"; } else { std::cout << "\t\t"; } std::cout << operation_name(pair.second.operation) << " "; std::cout << address(pair.second.addressing_mode, &rom[pair.first - 0x1000], pair.first); std::cout << std::endl; }*/ } void GLU::run_for(Cycles cycles) { executor_.run_for(cycles); } // MARK: - M50470 port handler void GLU::set_port_output(int port, uint8_t value) { ports_[port] = value; switch(port) { case 0: // printf(" {R%d} ", register_address_); // printf("Set R%d: %02x\n", register_address_, value); registers_[register_address_] = value; switch(register_address_) { default: break; case 7: status_ |= uint8_t(CPUFlags::CommandDataIsValid); break; } break; case 1: // printf("Keyboard write: %02x???\n", value); break; case 2: // printf("ADB data line input: %d???\n", value >> 7); // printf("IIe keyboard reset line: %d\n", (value >> 6)&1); // printf("IIgs reset line: %d\n", (value >> 5)&1); // printf("GLU strobe: %d\n", (value >> 4)&1); // printf("Select GLU register: %d [%02x]\n", value & 0xf, value); register_address_ = value & 0xf; break; case 3: { // printf("IIe KWS: %d\n", (value >> 6)&3); // printf("ADB data line output: %d\n", (value >> 3)&1); const bool new_adb_level = value & 0x08; if(new_adb_level != adb_level_) { printf("."); if(!new_adb_level) { // Transition to low. constexpr float clock_rate = 894886.25; const float seconds = float(total_period_.as()) / clock_rate; // Check for a valid bit length — 70 to 130 microseconds. // (Plus a little). if(seconds >= 0.000'56 && seconds <= 0.001'04) { printf("!!! Attention\n"); } else if(seconds >= 0.000'06 && seconds <= 0.000'14) { printf("!!! bit: %d\n", (low_period_.as() * 2) < total_period_.as()); // printf("tested: %0.2f\n", float(low_period_.as()) / float(total_period_.as())); } else { printf("!!! Rejected %d microseconds\n", int(seconds * 1'000'000.0f)); } total_period_ = low_period_ = Cycles(0); } adb_level_ = new_adb_level; } } break; default: assert(false); } } uint8_t GLU::get_port_input(int port) { switch(port) { case 0: // printf(" {R%d} ", register_address_); switch(register_address_) { default: break; case 1: registers_[4] &= ~uint8_t(MicrocontrollerFlags::CommandRegisterFull); status_ &= ~uint8_t(CPUFlags::CommandRegisterFull); break; } if(register_address_ == 1) { printf("[C %02x]", registers_[1]); } return registers_[register_address_]; case 1: // printf("IIe keyboard read\n"); return 0x06; case 2: // printf("ADB data line input, etc\n"); return ports_[2]; case 3: // printf("ADB data line output, etc\n"); return ports_[3]; default: assert(false); } return 0xff; } void GLU::run_ports_for(Cycles cycles) { total_period_ += cycles; if(!adb_level_) { low_period_ += cycles; } }