// // DriveSpeedAccumulator.cpp // Clock Signal // // Created by Thomas Harte on 01/06/2019. // Copyright © 2019 Thomas Harte. All rights reserved. // #include "DriveSpeedAccumulator.hpp" namespace { /* For knowledge encapsulate below, all credit goes to the MAME team. No original research here. Per their investigation, the bytes collected for PWM output feed a 6-bit LFSR, which then keeps output high until it eventually reaches a state of 0x20. The LFSR shifts rightward and taps bits 0 and 1 as the new input into bit 5. I've therefore implemented the LFSR as below, feeding into a lookup table to calculate actual pulse widths from the values stored into the PWM buffer. */ template constexpr uint8_t lfsr() { if constexpr (value == 0x20 || !value) return 0; return 1+lfsr<(((value ^ (value >> 1))&1) << 5) | (value >> 1)>(); } constexpr uint8_t pwm_lookup[] = { lfsr<0>(), lfsr<1>(), lfsr<2>(), lfsr<3>(), lfsr<4>(), lfsr<5>(), lfsr<6>(), lfsr<7>(), lfsr<8>(), lfsr<9>(), lfsr<10>(), lfsr<11>(), lfsr<12>(), lfsr<13>(), lfsr<14>(), lfsr<15>(), lfsr<16>(), lfsr<17>(), lfsr<18>(), lfsr<19>(), lfsr<20>(), lfsr<21>(), lfsr<22>(), lfsr<23>(), lfsr<24>(), lfsr<25>(), lfsr<26>(), lfsr<27>(), lfsr<28>(), lfsr<29>(), lfsr<30>(), lfsr<31>(), lfsr<32>(), lfsr<33>(), lfsr<34>(), lfsr<35>(), lfsr<36>(), lfsr<37>(), lfsr<38>(), lfsr<39>(), lfsr<40>(), lfsr<41>(), lfsr<42>(), lfsr<43>(), lfsr<44>(), lfsr<45>(), lfsr<46>(), lfsr<47>(), lfsr<48>(), lfsr<49>(), lfsr<50>(), lfsr<51>(), lfsr<52>(), lfsr<53>(), lfsr<54>(), lfsr<55>(), lfsr<56>(), lfsr<57>(), lfsr<58>(), lfsr<59>(), lfsr<60>(), lfsr<61>(), lfsr<62>(), lfsr<63>(), }; } using namespace Apple::Macintosh; void DriveSpeedAccumulator::post_sample(uint8_t sample) { if(!delegate_) return; // An Euler-esque approximation is used here: just collect all // the samples until there is a certain small quantity of them, // then produce a new estimate of rotation speed and start the // buffer afresh. // // Note the table lookup here; see text above. sample_total_ += pwm_lookup[sample & 0x3f]; ++sample_count_; if(sample_count_ == samples_per_bucket) { // The below fits for a function like `a + bc`; it encapsultes the following // beliefs: // // (i) motor speed is proportional to voltage supplied; // (ii) with pulse-width modulation it's therefore proportional to the duty cycle; // (iii) the Mac pulse-width modulates whatever it reads from the disk speed buffer, as per the LFSR rules above; // (iv) ... subject to software pulse-width modulation of that pulse-width modulation. // // So, I believe current motor speed is proportional to a low-pass filtering of // the speed buffer. Which I've implemented very coarsely via 'large' bucketed-averages, // noting also that exact disk motor speed is always a little approximate. // The formula below was derived from observing values the Mac wrote into its // disk-speed buffer. Given that it runs a calibration loop before doing so, // I cannot guarantee the accuracy of these numbers beyond being within the // range that the computer would accept. const float normalised_sum = float(sample_total_) / float(samples_per_bucket); const float rotation_speed = (normalised_sum - 3.7f) * 17.6f; delegate_->drive_speed_accumulator_set_drive_speed(this, rotation_speed); sample_count_ = 0; sample_total_ = 0; } }